22 research outputs found

    Real-Time Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    Adaptive modulation received significant attention for underwater acoustic (UA) communication systems with the aim of increasing the system efficiency. It is challenging to attain a high data rate in UA communication, as UA channels vary fast, along with the environmental factors. For a time-varying UA channel, a self-adaptive system is an attractive option, which can choose the best method according to the channel condition to guarantee the continuous connectivity and high performance constantly. A real-time orthogonal frequency-division multiplexing (OFDM)-based adaptive UA communication system is presented in this paper, employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. In this paper, the received SNR is considered as a performance metric to select the transmission parameters, which are sent back to the transmitter for data transmission. In this research, a UA OFDM communication system is developed, employing adaptive modulation schemes for a nonstationary UA environment which allows to select subcarriers, modulation size, and allocate power adaptively to enhance the reliability of communication, guarantee continuous connectivity, and boost data rate. The recent UA communication experiments carried out in the Canning River, Western Australia, verify the performance of the proposed adaptive UA OFDM system, and the experimental results confirm the superiority of the proposed adaptive scheme

    Adaptive Modulation Schemes for Underwater Acoustic OFDM Communication

    Get PDF
    High data rate communication is challenging in underwater acoustic (UA) communication as UA channels vary fast along with the environmental factors. A real-time Orthogonal frequency-division multiplexing (OFDM) based adaptive UA communication system is studied in this research employing the National Instruments (NI) LabVIEW software and NI CompactDAQ device. The developed adaptive modulation schemes enhance the reliability of communication, guarantee continuous connectivity, ensure maximum performance under a fixed BER at all times and boost data rate

    Impulsive noise cancellation and channel estimation in power line communication systems

    Get PDF
    Power line communication (PLC) is considered as the most viable enabler of the smart grid. PLC exploits the power line infrastructure for data transmission and provides an economical communication backbone to support the requirements of smart grid applications. Though PLC brings a lot of benefits to the smart grid implementation, impairments such as frequency selective attenuation of the high-frequency communication signal, the presence of impulsive noise (IN) and the narrowband interference (NBI) from closely operating wireless communication systems, make the power line a hostile environament for reliable data transmission. Hence, the main objective of this dissertation is to design signal processing algorithms that are specifically tailored to overcome the inevitable impairments in the power line environment. First, we propose a novel IN mitigation scheme for PLC systems. The proposed scheme actively estimates the locations of IN samples and eliminates the effect of IN only from the contaminated samples of the received signal. By doing so, the typical problem encountered while mitigating the IN is avoided by using passive IN power suppression algorithms, where samples besides the ones containing the IN are also affected creating additional distortion in the received signal. Apart from the IN, the PLC transmission is also impaired by NBI. Exploiting the duality of the problem where the IN is impulsive in the time domain and the NBI is impulsive in the frequency domain, an extended IN mitigation algorithm is proposed in order to accurately estimate and effectively cancel both impairments from the received signal. The numerical validation of the proposed schemes shows improved BER performance of PLC systems in the presence of IN and NBI. Secondly, we pay attention to the problem of channel estimation in the power line environment. The presence of IN makes channel estimation challenging for PLC systems. To accurately estimate the channel, two maximumlikelihood (ML) channel estimators for PLC systems are proposed in this thesis. Both ML estimators exploit the estimated IN samples to determine the channel coefficients. Among the proposed channel estimators, one treats the estimated IN as a deterministic quantity, and the other assumes that the estimated IN is a random quantity. The performance of both estimators is analyzed and numerically evaluated to show the superiority of the proposed estimators in comparison to conventional channel estimation strategies in the presence of IN. Furthermore, between the two proposed estimators, the one that is based on the random approach outperforms the deterministic one in all typical PLC scenarios. However, the deterministic approach based estimator can perform consistent channel estimation regardless of the IN behavior with less computational effort and becomes an efficient channel estimation strategy in situations where high computational complexity cannot be afforded. Finally, we propose two ML algorithms to perform a precise IN support detection. The proposed algorithms perform a greedy search of the samples in the received signal that are contaminated by IN. To design such algorithms, statistics defined for deterministic and random ML channel estimators are exploited and two multiple hypothesis tests are built according to Bonferroni and Benjamini and Hochberg design criteria. Among the proposed estimators, the random ML-based approach outperforms the deterministic ML-based approach while detecting the IN support in typical power line environment. Hence, this thesis studies the power line environment for reliable data transmission to support smart grid. The proposed signal processing schemes are robust and allow PLC systems to effectively overcome the major impairments in an active electrical network.The efficient mitigation of IN and NBI and accurate estimation of channel enhances the applicability of PLC to support critical applications that are envisioned for the future electrical power grid.La comunicaci贸n a trav茅s de l铆neas de transmisi贸n el茅ctricas (PLC) se considera uno de los habilitadores principales de la red el茅ctrica inteligente (smart grid). PLC explota la infraestructura de la red el茅ctrica para la transmisi贸n de datos y proporciona una red troncal de comunicaci贸n econ贸mica para poder cumplir con los requisitos de las aplicaciones para smart grids. Si bien la tecnolog铆a PLC aporta muchos beneficios a la implementaci贸n de la smart grid, los impedimentos, como la atenuaci贸n selectiva en frecuencia de la se帽al de comunicaci贸n, la presencia de ruido impulsivo (IN) y las interferencias de banda estrecha (NBI) de los sistemas de comunicaci贸n inal谩mbrica de operaci贸n cercana, hacen que la red el茅ctrica sea un entorno hostil para la transmisi贸n fiable de datos. En este contexto, el objetivo principal de esta tesis es dise帽ar algoritmos de procesado de se帽al que est茅n espec铆ficamente dise帽ados para superar los impedimentos inevitables en el entorno de la red el茅ctrica como son IN y NBI. Primeramente, proponemos un nuevo esquema de mitigaci贸n de IN en sistemas PLC. El esquema propuesto estima activamente las ubicaciones de las muestras de IN y elimina el efecto de IN solo en las muestras contaminadas de la se帽al recibida. Al hacerlo, el problema t铆pico que se encuentra al mitigar el IN con t茅cnicas tradicionales (donde tambi茅n se ven afectadas otras muestras que contienen la IN, creando una distorsi贸n adicional en la se帽al recibida) se puede evitar con la consiguiente mejora del rendimiento. Aparte de IN, los sistemas PLC tambi茅n se ven afectados por el NBI. Aprovechando la dualidad del problema (el IN es impulsivo en el dominio del tiempo y el NBI es impulsivo en el dominio de la frecuencia), se propone un algoritmo de mitigaci贸n de IN ampliado para estimar con precisi贸n y cancelar efectivamente ambas degradaciones de la se帽al recibida. La validaci贸n num茅rica de los esquemas propuestos muestra un mejor rendimiento en t茅rminos de tasa de error de bit (BER) en sistemas PLC con presencia de IN y NBI. En segundo lugar, prestamos atenci贸n al problema de la estimaci贸n de canal en entornos PLC. La presencia de IN hace que la estimaci贸n de canal sea un desaf铆o para los sistemas PLC futuros. En esta tesis, se proponen dos estimadores de canal para sistemas PLC de m谩xima verosimilitud (ML) para sistemas PLC. Ambos estimadores ML explotan las muestras IN estimadas para determinar los coeficientes del canal. Entre los estimadores de canal propuestos, uno trata la IN estimada como una cantidad determinista, y la otra asume que la IN estimada es una cantidad aleatoria. El rendimiento de ambos estimadores se analiza y se eval煤a num茅ricamente para mostrar la superioridad de los estimadores propuestos en comparaci贸n con las estrategias de estimaci贸n de canales convencionales en presencia de IN. Adem谩s, entre los dos estimadores propuestos, el que se basa en el enfoque aleatorio supera el determinista en escenarios PLC t铆picos. Sin embargo, el estimador basado en el enfoque determinista puede llevar a cabo una estimaci贸n de canal consistente independientemente del comportamiento de la IN con menos esfuerzo computacional y se convierte en una estrategia de estimaci贸n de canal eficiente en situaciones donde no es posible disponer de una alta complejidad computacionalPostprint (published version

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore