596 research outputs found

    Decision Directed Channel Estimation Aided OFDM Employing Sample-Spaced and Fractionally-Spaced CIR Estimators

    No full text
    Abstract—In this letter we characterize the substantial difference between two channel estimation approaches, namely the sample-spaced (SS) and the fractionally-spaced (FS) channel impulse response (CIR) estimators. The achievable performance of decision-directed channel estimation (DDCE) methods employing both the SS- and the FS-CIR estimators is analyzed in the context of an OFDM system. The performance of the two estimation methods is compared and it is shown that the DDCE scheme employing the Projection Approximation Subspace Tracking (PAST)-aided FS-CIR estimator outperforms its SS-CIR estimator-based counterpart. Index Terms—Multiuser OFDM, decision directed channel estimation, impulse response estimation SDMA

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Channel Estimation for Massive MIMO-OFDM Systems by Tracking the Joint Angle-Delay Subspace

    Get PDF
    In this paper, we propose joint angle-delay subspace based channel estimation in single cell for broadband massive multiple-input and multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) modulation. Based on a parametric channel model, we present a new concept of the joint angle-delay subspace which can be tracked by the low-complexity low-rank adaptive filtering (LORAF) algorithm. Then, we investigate an interference-free transmission condition that the joint angle-delay subspaces of the users reusing the same pilots are non-overlapping. Since the channel statistics are usually unknown, we develop a robust minimum mean square error (MMSE) estimator under the worst precondition of pilot decontamination, considering that the joint angle-delay subspaces of the interfering users fully overlap. Furthermore, motivated by the interference-free transmission criteria, we present a novel low-complexity greedy pilot scheduling algorithm to avoid the problem of initial value sensitivity. Simulation results show that the joint angle-delay subspace can be estimated effectively, and the proposed pilot reuse scheme combined with robust MMSE channel estimation offers significant performance gains

    Joint data detection and channel estimation for OFDM systems

    Get PDF
    We develop new blind and semi-blind data detectors and channel estimators for orthogonal frequency-division multiplexing (OFDM) systems. Our data detectors require minimizing a complex, integer quadratic form in the data vector. The semi-blind detector uses both channel correlation and noise variance. The quadratic for the blind detector suffers from rank deficiency; for this, we give a low-complexity solution. Avoiding a computationally prohibitive exhaustive search, we solve our data detectors using sphere decoding (SD) and V-BLAST and provide simple adaptations of the SD algorithm. We consider how the blind detector performs under mismatch, generalize the basic data detectors to nonunitary constellations, and extend them to systems with pilots and virtual carriers. Simulations show that our data detectors perform well

    Doppler Spread Estimation by Tracking the Delay-Subspace for OFDM Systems in Doubly Selective Fading Channels

    Full text link
    A novel maximum Doppler spread estimation algorithm for OFDM systems with comb-type pilot pattern is presented in this paper. By tracking the drifting delay subspace of time-varying multipath channels, a Doppler dependent parameter can be accurately measured and further expanded and transformed into a non-linear high-order polynomial equation, from which the maximum Doppler spread is readily solved by resorting to the Newton's method. Its performance is demonstrated by simulations.Comment: 4 pages, 2 figures, Appear in IEEE Signal Process. Letter
    • …
    corecore