53 research outputs found

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Soft-decision multiple-symbol differential sphere detection and decision-feedback differential detection for differential QAM dispensing with channel estimation in the face of rapidly fading channels

    No full text
    Turbo detection performed by exchanging extrinsic information between the soft-decision QAM detector and the channel decoder is beneficial for the sake of exploring the bit dependency imposed both by modulation and by channel coding. However, when the soft-decision coherent QAM detectors are provided with imperfect channel estimates in rapidly fading channels, they tend to produce potentially unreliable LLRs that deviate from the true probabilities, which degrades the turbo detection performance. Against this background, in this paper, we propose a range of new soft-decision multiple-symbol differential sphere detection (MSDSD) and decision-feedback differential detection (DFDD) solutions for differential QAM (DQAM), which dispense with channel estimation in the face of rapidly fading channels. Our proposed design aims for solving the two inherent problems in soft-decision DQAM detection design, which have also been the most substantial obstacle in the way of offering a solution for turbo detected MSDSD aided differential MIMO schemes using QAM: 1) how to facilitate the soft-decision detection of the DQAM's amplitudes, which-in contrast to the DPSK phases-do not form a unitary matrix, and 2) how to separate and streamline the DQAM's soft-decision amplitude and phase detectors. Our simulation results demonstrate that our proposed MSDSD aided DQAM solution is capable of substantially outperforming its MSDSD aided DPSK counterpart in coded systems without imposing a higher complexity. Moreover, our proposed DFDD aided DQAM solution is shown to outperform the conventional solutions in literature. Our discussions on the important subject of coherent versus noncoherent schemes suggest that compared to coherent square QAM relying on realistic imperfect channel estimation, MSDSD aided DQAM may be deemed as a better candidate for turbo detection assisted coded systems operating at high Doppler frequencie

    Link level performance evaluation and link abstraction for LTE/LTE-advanced downlink

    Get PDF
    Els objectius principals d'aquesta tesis són l'avaluació del rendiment a nivell d'enllaç i l'estudi de l'abstracció de l'enllaç pel LTE/LTE-Advanced DL. S’ha desenvolupat un simulador del nivell d'enllaç E-UTRA DL basat en la tecnologia MIMO-OFDM. Es simulen els errors d'estimació de canal amb un model d'error de soroll additiu Gaussià anomenat CEEM. El resultat d'aquest simulador serveix per avaluar el rendiment a nivell d'enllaç del LTE/LTE-Advanced DL en diferents entorns . La idea bàsica dels mètodes d'abstracció de l'enllaç és mapejar el vector de SNRs de les subportadores a un valor escalar, l'anomenada ESNR, la qual és usada per a predir la BLER. Proposem un innovador mètode d'abstracció de l'enllaç que pot predir la BLER amb bona precisió en esvaïments multicamí i que inclouen els efectes de les retransmissions HARQ. El mètode proposat es basa amb l'estimació de la informació mútua entre els bits transmesos i els LLRs rebuts.The main objectives of this dissertation are the evaluation of the link level performance and the study of link abstraction for LTE/LTE-Advanced DL. An E-UTRA DL link level simulator has been developed based on MIMO-OFDM technology. We simulate channel estimation errors by a Gaussian additive noise error model called CEEM. The result of this simulator serves to evaluate the MIMO-OFDM LTE/LTE-Advanced DL link level performance in different environments. The basic idea of link abstraction methods is to map the vector of the subcarrier SNRs to a single scalar, the ESNR, which is then used to predict the BLER. We propose a novel link abstraction method that can predict the BLER with good accuracy in multipath fading and including the effects of HARQ retransmissions. The proposed method is based on estimating the mutual information between the transmitted bits and the received LLRs.Postprint (published version

    Cyclic Delay-Doppler Shift: A Simple Transmit Diversity Technique for Delay-Doppler Waveforms in Doubly Selective Channels

    Full text link
    Delay-Doppler waveform design has been considered as a promising solution to achieve reliable communication under high-mobility channels for the space-air-ground-integrated networks (SAGIN). In this paper, we introduce the cyclic delay-Doppler shift (CDDS) technique for delay-Doppler waveforms to extract transmit diversity in doubly selective channels. Two simple CDDS schemes, named time-domain CDDS (TD-CDDS) and modulation-domain CDDS (MD-CDDS), are proposed in the setting of multiple-input multiple-output (MIMO). We demonstrate the applications of CDDS on two representative delay-Doppler waveforms, namely orthogonal time frequency space (OTFS) and affine frequency division multiplexing (AFDM), by deriving their corresponding CDDS matrices. Furthermore, we prove theoretically and experimentally that CDDS can provide OTFS and AFDM with full transmit diversity gain on most occasions

    A universal space-time architecture for multiple-antenna aided systems

    No full text
    In this tutorial, we first review the family of conventional multiple-antenna techniques, and then we provide a general overview of the recent concept of the powerful Multiple-Input Multiple-Output (MIMO) family based on a universal Space-Time Shift Keying (STSK) philosophy. When appropriately configured, the proposed STSK scheme has the potential of outperforming conventional MIMO arrangements
    corecore