152 research outputs found

    An Iterative Receiver for OFDM With Sparsity-Based Parametric Channel Estimation

    Get PDF
    In this work we design a receiver that iteratively passes soft information between the channel estimation and data decoding stages. The receiver incorporates sparsity-based parametric channel estimation. State-of-the-art sparsity-based iterative receivers simplify the channel estimation problem by restricting the multipath delays to a grid. Our receiver does not impose such a restriction. As a result it does not suffer from the leakage effect, which destroys sparsity. Communication at near capacity rates in high SNR requires a large modulation order. Due to the close proximity of modulation symbols in such systems, the grid-based approximation is of insufficient accuracy. We show numerically that a state-of-the-art iterative receiver with grid-based sparse channel estimation exhibits a bit-error-rate floor in the high SNR regime. On the contrary, our receiver performs very close to the perfect channel state information bound for all SNR values. We also demonstrate both theoretically and numerically that parametric channel estimation works well in dense channels, i.e., when the number of multipath components is large and each individual component cannot be resolved.Comment: Major revision, accepted for IEEE Transactions on Signal Processin

    Optimal Power Allocation for Channel Estimation in MIMO-OFDM System with Per-Subcarrier Transmit Antenna Selection

    Get PDF
    A novel hybrid channel estimator is proposed for multiple-input multiple-output orthogonal frequency- division multiplexing (MIMO-OFDM) system with per-subcarrier transmit antenna selection having optimal power allocation among subcarriers. In practice, antenna selection information is transmitted through a binary symmetric control channel with a crossover probability. Linear minimum mean-square error (LMMSE) technique is optimal technique for channel estimation in MIMO-OFDM system. Though LMMSE estimator performs well at low signal to noise ratio (SNR), in the presence of antenna-to-subcarrier-assignment error (ATSA), it introduces irreducible error at high SNR. We have proved that relaxed MMSE (RMMSE) estimator overcomes the performance degradation at high SNR. The proposed hybrid estimator combines the benefits of LMMSE at low SNR and RMMSE estimator at high SNR. The vector mean square error (MSE) expression is modified as scalar expression so that an optimal power allocation can be performed. The convex optimization problem is formulated and solved to allocate optimal power to subcarriers minimizing the MSE, subject to transmit sum power constraint. Further, an analytical expression for SNR threshold at which the hybrid estimator is to be switched from LMMSE to RMMSE is derived. The simulation results show that the proposed hybrid estimator gives robust performance, irrespective of ATSA error

    A Low Complexity Optimal LMMSE Channel Estimator for OFDM System

    Get PDF
    Linear minimum mean square error (LMMSE) is the optimal channel estimator in the mean square error (MSE) perspective, however, it requires matrix inversion with cubic complexity. In this paper, by exploiting the circulant property of the channel frequency autocorrelation matrix RHH, an efficient LMMSE channel estimation method has been proposed for orthogonal frequency division multiplexing (OFDM) based on fast Fourier transformation (FFT) and circular convolution theorem. Finally, the computer simulation is carried out to compare the proposed LMMSE method with the classical LS and LMMSE methods in terms of performance measure and computational complexity. The simulation results show that the proposed LMMSE estimator achieves exactly same performance as conventional LMMSE estimator with much lower computational complexity

    Low-Complexity Approximations for LMMSE Channel Estimation in OFDM/OQAM

    Get PDF
    International audienceIn this paper, the authors describe and compare two low-complexity approximations of the linear minimum mean square error (LMMSE) channel estimation method for orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) systems. Simulations reveal that we are able by proposed approximations to reduce the complexity of the LMMSE estimator without degrading the overall BER system performance

    Design and implementation of a downlink MC-CDMA receiver

    Get PDF
    Cette thèse présente une étude d'un système complet de transmission en liaison descendante utilisant la technologie multi-porteuse avec l'accès multiple par division de code (Multi-Carrier Code Division Multiple Access, MC-CDMA). L'étude inclut la synchronisation et l'estimation du canal pour un système MC-CDMA en liaison descendante ainsi que l'implémentation sur puce FPGA d'un récepteur MC-CDMA en liaison descendante en bande de base. Le MC-CDMA est une combinaison de la technique de multiplexage par fréquence orthogonale (Orthogonal Frequency Division Multiplexing, OFDM) et de l'accès multiple par répartition de code (CDMA), et ce dans le but d'intégrer les deux technologies. Le système MC-CDMA est conçu pour fonctionner à l'intérieur de la contrainte d'une bande de fréquence de 5 MHz pour les modèles de canaux intérieur/extérieur pédestre et véhiculaire tel que décrit par le "Third Genaration Partnership Project" (3GPP). La composante OFDM du système MC-CDMA a été simulée en utilisant le logiciel MATLAB dans le but d'obtenir des paramètres de base. Des codes orthogonaux à facteur d'étalement variable (OVSF) de longueur 8 ont été choisis comme codes d'étalement pour notre système MC-CDMA. Ceci permet de supporter des taux de transmission maximum jusquà 20.6 Mbps et 22.875 Mbps (données non codées, pleine charge de 8 utilisateurs) pour les canaux intérieur/extérieur pédestre et véhiculaire, respectivement. Une étude analytique des expressions de taux d'erreur binaire pour le MC-CDMA dans un canal multivoies de Rayleigh a été réalisée dans le but d'évaluer rapidement et de façon précise les performances. Des techniques d'estimation de canal basées sur les décisions antérieures ont été étudiées afin d'améliorer encore plus les performances de taux d'erreur binaire du système MC-CDMA en liaison descendante. L'estimateur de canal basé sur les décisions antérieures et utilisant le critère de l'erreur quadratique minimale linéaire avec une matrice' de corrélation du canal de taille 64 x 64 a été choisi comme étant un bon compromis entre la performance et la complexité pour une implementation sur puce FPGA. Une nouvelle séquence d'apprentissage a été conçue pour le récepteur dans la configuration intérieur/extérieur pédestre dans le but d'estimer de façon grossière le temps de synchronisation et le décalage fréquentiel fractionnaire de la porteuse dans le domaine du temps. Les estimations fines du temps de synchronisation et du décalage fréquentiel de la porteuse ont été effectués dans le domaine des fréquences à l'aide de sous-porteuses pilotes. Un récepteur en liaison descendante MC-CDMA complet pour le canal intérieur /extérieur pédestre avec les synchronisations en temps et en fréquence en boucle fermée a été simulé avant de procéder à l'implémentation matérielle. Le récepteur en liaison descendante en bande de base pour le canal intérieur/extérieur pédestre a été implémenté sur un système de développement fabriqué par la compagnie Nallatech et utilisant le circuit XtremeDSP de Xilinx. Un transmetteur compatible avec le système de réception a également été réalisé. Des tests fonctionnels du récepteur ont été effectués dans un environnement sans fil statique de laboratoire. Un environnement de test plus dynamique, incluant la mobilité du transmetteur, du récepteur ou des éléments dispersifs, aurait été souhaitable, mais n'a pu être réalisé étant donné les difficultés logistiques inhérentes. Les taux d'erreur binaire mesurés avec différents nombres d'usagers actifs et différentes modulations sont proches des simulations sur ordinateurs pour un canal avec bruit blanc gaussien additif

    A Reduced Complexity Ungerboeck Receiver for Quantized Wideband Massive SC-MIMO

    Full text link
    Employing low resolution analog-to-digital converters in massive multiple-input multiple-output (MIMO) has many advantages in terms of total power consumption, cost and feasibility of such systems. However, such advantages come together with significant challenges in channel estimation and data detection due to the severe quantization noise present. In this study, we propose a novel iterative receiver for quantized uplink single carrier MIMO (SC-MIMO) utilizing an efficient message passing algorithm based on the Bussgang decomposition and Ungerboeck factorization, which avoids the use of a complex whitening filter. A reduced state sequence estimator with bidirectional decision feedback is also derived, achieving remarkable complexity reduction compared to the existing receivers for quantized SC-MIMO in the literature, without any requirement on the sparsity of the transmission channel. Moreover, the linear minimum mean-square-error (LMMSE) channel estimator for SC-MIMO under frequency-selective channel, which do not require any cyclic-prefix overhead, is also derived. We observe that the proposed receiver has significant performance gains with respect to the existing receivers in the literature under imperfect channel state information.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore