390 research outputs found

    Pilot embedding for channel estimation and tracking in OFDM systems

    Get PDF
    Journal ArticleAbstract-We consider the problem of channel estimation and tracking in OFDM systems and explore the idea of adding pilot symbols to the data symbols as a means to conserve bandwidth. The term pilot embedding (PE) is used to refer to this scheme. Compared to the pilot insertion (PI) scheme, i.e., the conventional pilot symbol assisted modulation (PSAM), PE is more bandwidth efficient since no separate subcarriers/timeslots are allocated to pilots. We formalize this by evaluating the capacity of the two schemes and showing that PE indeed has the potential to transmit at a higher rate. The problem of channel tracking using a decision directed approach is reviewed and found to be unreliable, in the sense that the channel estimator fails to track the channel variations after some iterations because of unavoidable decision errors. We propose an ad hoc channel estimation algorithm that uses the embedded pilots along with the past decisions of data for reliable tracking of the channel

    Detect to Learn: Structure Learning with Attention and Decision Feedback for MIMO-OFDM Receive Processing

    Full text link
    The limited over-the-air (OTA) pilot symbols in multiple-input-multiple-output orthogonal-frequency-division-multiplexing (MIMO-OFDM) systems presents a major challenge for detecting transmitted data symbols at the receiver, especially for machine learning-based approaches. While it is crucial to explore effective ways to exploit pilots, one can also take advantage of the data symbols to improve detection performance. Thus, this paper introduces an online attention-based approach, namely RC-AttStructNet-DF, that can efficiently utilize pilot symbols and be dynamically updated with the detected payload data using the decision feedback (DF) mechanism. Reservoir computing (RC) is employed in the time domain network to facilitate efficient online training. The frequency domain network adopts the novel 2D multi-head attention (MHA) module to capture the time and frequency correlations, and the structural-based StructNet to facilitate the DF mechanism. The attention loss is designed to learn the frequency domain network. The DF mechanism further enhances detection performance by dynamically tracking the channel changes through detected data symbols. The effectiveness of the RC-AttStructNet-DF approach is demonstrated through extensive experiments in MIMO-OFDM and massive MIMO-OFDM systems with different modulation orders and under various scenarios.Comment: Accepted to IEEE Transactions on Communication

    An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing

    Get PDF
    Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communication-centric, radar-centric, and joint design and optimization

    Generalized DFT-s-OFDM Waveforms Without Cyclic Prefix

    Get PDF

    Autoregressive Attention Neural Networks for Non-Line-of-Sight User Tracking with Dynamic Metasurface Antennas

    Full text link
    User localization and tracking in the upcoming generation of wireless networks have the potential to be revolutionized by technologies such as the Dynamic Metasurface Antennas (DMAs). Commonly proposed algorithmic approaches rely on assumptions about relatively dominant Line-of-Sight (LoS) paths, or require pilot transmission sequences whose length is comparable to the number of DMA elements, thus, leading to limited effectiveness and considerable measurement overheads in blocked LoS and dynamic multipath environments. In this paper, we present a two-stage machine-learning-based approach for user tracking, specifically designed for non-LoS multipath settings. A newly proposed attention-based Neural Network (NN) is first trained to map noisy channel responses to potential user positions, regardless of user mobility patterns. This architecture constitutes a modification of the prominent vision transformer, specifically modified for extracting information from high-dimensional frequency response signals. As a second stage, the NN's predictions for the past user positions are passed through a learnable autoregressive model to exploit the time-correlated channel information and obtain the final position predictions. The channel estimation procedure leverages a DMA receive architecture with partially-connected radio frequency chains, which results to reduced numbers of pilots. The numerical evaluation over an outdoor ray-tracing scenario illustrates that despite LoS blockage, this methodology is capable of achieving high position accuracy across various multipath settings.Comment: 5 pages, 3 figures, accepted for presentation by 2023 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2023

    EXTRINSIC CHANNEL-LIKE FINGERPRINT EMBEDDING FOR TRANSMITTER AUTHENTICATION IN WIRELESS SYSTEMS

    Get PDF
    We present a physical-layer fingerprint-embedding scheme for wireless signals, focusing on multiple input multiple output (MIMO) and orthogonal frequency division multiplexing (OFDM) transmissions, where the fingerprint signal conveys a low capacity communication suitable for authenticating the transmission and further facilitating secure communications. Our system strives to embed the fingerprint message into the noise subspace of the channel estimates obtained by the receiver, using a number of signal spreading techniques. When side information of channel state is known and leveraged by the transmitter, the performance of the fingerprint embedding can be improved. When channel state information is not known, blind spreading techniques are applied. The fingerprint message is only visible to aware receivers who explicitly preform detection of the signal, but is invisible to receivers employing typical channel equalization. A taxonomy of overlay designs is discussed and these designs are explored through experiment using time-varying channel-state information (CSI) recorded from IEEE802.16e Mobile WiMax base stations. The performance of the fingerprint signal as received by a WiMax subscriber is demonstrated using CSI measurements derived from the downlink signal. Detection performance for the digital fingerprint message in time-varying channel conditions is also presented via simulation

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems
    • …
    corecore