649 research outputs found

    LPTV-Aware Bit Loading and Channel Estimation in Broadband PLC for Smart Grid

    Get PDF
    Power line communication (PLC) has received steady interest over recent decades because of its economic use of existing power lines, and is one of the communication technologies envisaged for Smart Grid (SG) infrastructure. However, power lines are not designed for data communication, and this brings unique challenges for data communication over power lines. In particular for broadband (BB) PLC, the channel exhibits linear periodically time varying (LPTV) behavior synchronous to the AC mains cycle. This is due to the time varying impedances of electrical devices that are connected to the power grid. Another challenge is the impulsive noise in addition to power line background noise, which is due to switching events in the power line network. In this work, we focus on two major aspects of an orthogonal frequency division multiplexing (OFDM) system for BB PLC LPTV channels; bit and power allocation, and channel estimation (CE). First, we investigate the problem of optimal bit and power allocation, in order to increase bit rates and improve energy efficiency. We present that the application of a power constraint that is averaged over many microslots can be exploited for further performance improvements through bit loading. Due to the matroid structure of the optimization problem, greedy-type algorithms are proven to be optimal for the new LPTV-aware bit and power loading. Significant gains are attained especially for poor (i.e. high attenuation) channel conditions, and at reduced transmit-power levels, where the energy per bit-transmission is also low. Next, two mechanisms are utilized to reduce the complexity of the optimal LPTV-aware bit loading and peak microslot power levels: (i) employing representative values from microslot transfer functions, and (ii) power clipping. The ideas of LPTV-aware bit loading, complexity reduction mechanism, and power clipping are also applicable to non-optimal bit loading schemes. We apply these ideas to two additional sub-optimal bit loading algorithms that are based on even-like power distribution for a portion of the available spectrum, and demonstrate that similar gains in bit rates are achieved. Second, we tackle the problem of CE for BB PLC LPTV channels. We first investigate pilot based CE with different pilot geometry in order to reduce interpolation error. Block-type, comb-type, and incline type pilot arrangements are considered and a performance comparison has been made. Next we develop a robust CE scheme with low overhead that addresses the drawbacks of block-type pilot arrangement and decision directed CE schemes such as large estimation overhead for block-type pilot geometry, and difficulty in channel tracking in the case of sudden changes in the channel for decision directed approaches. In order to overcome these drawbacks, we develop a transform domain (TD) analysis approach to determine the cause of changes in the channel estimates, which are due to changes in the channel response or the presence of impulsive noise. We then propose a robust CE scheme with low estimation overhead, which utilizes pilot symbols placed widely apart and exploits the information obtained from TD analysis as a basis for switching between various CE schemes. The overhead of the proposed scheme for CE is low, and sudden changes in the channel are tracked affectively. Therefore, the effects of the LPTV channel and the impulsive noise on CE are mitigated. Our results indicate that for bit and power allocation, the proposed reduced complexity LPTV-aware bit loading with power clipping algorithm performs very close to the optimal LPTV-aware bit loading, and is an attractive solution to bit loading in a practical setting. Finally, for the CE problem, the proposed CE scheme based on TD analysis has low estimation overhead, performs well compared to block-type pilot arrangement and decision directed CE schemes, and is robust to changes in the channel and the presence of impulsive noise. Therefore, it is a good alternative for CE in BB PLC

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    Inferring Power Grid Information with Power Line Communications: Review and Insights

    Full text link
    High-frequency signals were widely studied in the last decade to identify grid and channel conditions in PLNs. PLMs operating on the grid's physical layer are capable of transmitting such signals to infer information about the grid. Hence, PLC is a suitable communication technology for SG applications, especially suited for grid monitoring and surveillance. In this paper, we provide several contributions: 1) a classification of PLC-based applications; 2) a taxonomy of the related methodologies; 3) a review of the literature in the area of PLC Grid Information Inference (GII); and, insights that can be leveraged to further advance the field. We found research contributions addressing PLMs for three main PLC-GII applications: topology inference, anomaly detection, and physical layer key generation. In addition, various PLC-GII measurement, processing, and analysis approaches were found to provide distinctive features in measurement resolution, computation complexity, and analysis accuracy. We utilize the outcome of our review to shed light on the current limitations of the research contributions and suggest future research directions in this field.Comment: IEEE Communication Surveys and Tutorials Journa

    Power Line Communication (PLC) Impulsive Noise Mitigation: A Review

    Get PDF
    Power Line Communication (PLC) is a technology which transforms the power line into pathways for the conveyance of broadband data. It has the advantage for it can avoid new installation since the current installation used for electrical power can also be used for data transmission. However, this power line channel presents a harsh environment for data transmission owing to the challenges of impulsive noise, high attenuation, selective fading and etc. Impulsive noise poses a severe challenge as its Power Spectral Density (PSD) is between 10–15dB above background noise. For good performance of the PLC system, this noise must be mitigated.  This paper presents a review of the techniques for the mitigation of impulsive noise in PLC which is classified into four categories, namely time domain, time/frequency domain, error correction code and other techniques. Time domain technique is a memoryless nonlinear technique where the signal's amplitude only changes according to a specified threshold without changing the phase.  Mitigation of impulsive noise is carried out on the received time domain signal before the demodulation FFT operation of the OFDM. Time/Frequency technique is a method of mitigating impulsive noise on the received signal at both before FFT demodulation and after FFT demodulation of the OFDM system. Error correction code technique is the application of forward error correction code by adding redundancy bits to the useful data bits for detection and possibly correction of error occurring during transmission.  Identifying the best performing technique will enhance the deployment of the technique while exploring the PLC channel capacity enhancement in the future. The best performing scheme in each of the category were selected and their BER vs SNR curves were compared with respect to the impulsive noise + awgn curve. Amongst all of these techniques, the error correction code technique had a performance that presents almost an outright elimination of impulsive noise in power line channel. Keywords: Impulsive noise, time domain, time/frequency domain, error correction code, sparse Bayesian learning, recursive detection and modified PLC-DMT

    Intelligent Control of Home Appliances via Network

    Get PDF

    Modelling and Characterization of Power Line Communication Channel

    Get PDF
    Massive advances in the ?eld of renewable energy sources have created a need for an infrastructure incorporating both renewable and non-renewable energy resources. Also the pressing need of increasing power demand seeks an infrastructure which can ful?ll the growing demands. Smart grid technology is emerging out to resolve such issues. Smart grid communicates with its entities to provide intelligence to the whole electricity delivery system. Thus the communication infrastructure is an essential part of such an emerging technology. Creation of an intelligent system for smart grid requires a reliable communication system. Power line communication is a communication backbone of smart grid system. It is viewed as an alternative for local area network and wireless communication at home premises. It enables communication between various domains of smart grid infrastructure. It serves as a communication media at customer premises and as a last mile communication. Recent advances in power line communication technology has created a large demand for access to network services inside premises. Power line communication has emerged as a strong candidate under such circumstances. Quality of service in power line communication relies heavily on characterization of the medium. This paper analyses the channel characteristics of power line. A transmission line model for high-frequency Power line channel is used to study the transfer characteristics of multibranch power line. In the present thesis, power line communication channel modelling is mainly focused. The channel modelling being essential part of any communication system is analysed thoroughly and observations are drawn from the simulation results obtained. All the simulations are performed in MATLAB simulation environment

    Channel modelling and relay for powerline communications

    Get PDF
    The thesis discusses the channel modelling and relay techniques in powerline communications (PLC) which is considered as a promising technology for the Smart Grid communications, Internet access and home area network (HAN). In this thesis, the statistical PLC channel characteristics are investigated, a new statistical channel modelling method is proposed for the in-door PLC. Then a series of the relay protocols are suggested for the broadband communications over power grid. The statistical channel modelling method is proposed to surmount the limits of the traditional deterministic PLC channel models such as multipath model and transmission line model. To develop the channel model, the properties of the multipath magnitudes, interval between the paths, cable loss and the channel classification are investigated in detail. Then, each property is described by statistical distribution or formula. The simulation results show that the statistical model can describe the PLC channels as accurate as deterministic models without the topology information which is a time-consuming work for collecting. The relay transmission is proposed to help PLC adapting the diverse application scenarios. The protocols covers the main relay aspects which include decode/amplify forwarding, single/ multiple relay nodes, full/half duplex relay working mode. The capacity performance of each protocol is given and compared. A series of the facts which improve the performance of the PLC networks are figured out according to simulation results. The facts include that the decode-and-forward is more suitable for the PLC environment, deviation or transforming station is better location for placing relay node and full duplex relay working mode help exploiting the capacity potential of the PLC networks. Some future works are pointed out based on the work of statistical channel model and relay. In the last part of this thesis, an unit based statistical channel model is initialled for adapting various PLC channel conditions, a more practical relay scenario which contains multiple data terminals is proposed for approaching the realistic transmission scenario. At last, the relay for the narrowband PLC Smart Grid is also mentioned as future research topic
    corecore