40 research outputs found

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Transceiver Design with Iterative Decoding of Capacity-Approaching codes over Fading channels

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Multiuser Detection Assisted Time- and Frequency-Domain Spread Multicarrier Code-Division Multiple-Access

    No full text
    In this contribution, we study a reduced-complexity multiuser detection aided multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) scheme, which employs both time (T)-domain and frequency (F)-domain spreading. We investigate the achievable detection performance in the context of synchronous TF-domain spread MC DS-CDMA when communicating over an additive white Gaussian noise (AWGN) channel. Five detection schemes are investigated, which include the single-user correlation based detector, the joint TF-domain decorrelating multiuser detector (MUD), the joint TF-domain MMSEMUD, the separate TF-domain decorrelating/MMSE MUD, and the separate TF-domain MMSE/decorrelating MUD. Our simulation results show that the separate TF-domain MUD schemes are capable of achieving a similar bit error rate (BER) performance to that of the significantly more complex joint TF-domain MUD schemes. Index Terms—Code-division multiple-access (CDMA), decorrelating, frequency-domain spreading, joint detection, minimum mean square error (MMSE), multicarrier (MC), multiuser detection, separate detection, time-domain spreading

    Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation

    Get PDF
    As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels

    802.11 Payload Iterative decoding between multiple transmission attempts

    Get PDF
    Abstract. The institute of electrical and electronics engineers (IEEE) 802.11 standard specifies widely used technology for wireless local area networks (WLAN). Standard specifies high-performance physical and media access control (MAC) layers for a distributed network but lacks an effective hybrid automatic repeat request (HARQ). Currently, the standard specifies forward error correction (FEC), error detection (ED), and automatic repeat request (ARQ), but in case of decoding errors, the previously transmitted information is not used when decoding the retransmitted packet. This is called Type 1 HARQ. Type 1 HARQ uses received energy inefficiently, but the simple implementation makes it an attractive solution. Unfortunately, research applying more sophisticated HARQ schemes on top of IEEE 802.11 is limited. In this Master’s Thesis, a novel HARQ technology based on packet retransmissions that can be decoded in a turbo-like manner, keeping as much as possible compatibility with vanilla 802.11, is proposed. The proposed technology is simulated with both the IEEE 802.11 code and with the robust, efficient and smart communication in unpredictable environments (RESCUE) code. An additional interleaver is added before the convolutional encoder in the proposed technology, interleaving either the whole frame or only the payload to enable effective iterative decoding. For received frames, turbo-like iterations are done between initially transmitted packet copy and retransmissions. Results are compared against the non-iterative combining method maximizing signal-to-noise ratio (SNR), maximum ratio combining (MRC). The main design goal for this technology is to maintain compatibility with the 802.11 standard while allowing efficient HARQ. Other design goals are range extension, higher throughput, and better performance in terms of bit error rate (BER) and frame error rate (FER). This technology can be used for range extension at low SNR range and may provide up to 4 dB gain at medium SNR range compared to MRC. At high SNR, technology can reduce the penalty from retransmission allowing higher average modulation and coding scheme (MCS). However, these gains come with the cost of computational complexity from the iterative decoding. The main limiting factors of the proposed technology are decoding errors in the header and the scrambler area, and resource-hungry-processing. In simulations, perfect synchronization and packet detection is assumed, but in reality, especially at low SNR, packet detection and synchronization would be challenging. 802.11 pakettien iteratiivinen dekoodaus lähetysten välillä. Tiivistelmä. IEEE 802.11-standardi määrittelee yleisesti käytetyn teknologian langattomille lähiverkoille. Standardissa määritellään tehokas fyysinen- ja verkkoliityntäkerros hajautetuille verkoille, mutta siitä puuttuu tehokas yhdistetty automaattinen uudelleenlähetys. Nykyisellään standardi määrittelee virheenkorjaavan koodin, virheellisen paketin tunnistuksen sekä automaattisen uudelleenlähetyksen, mutta aikaisemmin lähetetyn paketin informaatiota ei käytetä hyväksi uudelleenlähetystilanteessa. Tämä menetelmä tunnetaan tyypin yksi yhdistettynä automaattisena uudelleenlähetyksenä. Tyypin yksi yhdistetty automaattinen uudelleenlähetys käyttää vastaanotettua signaalia tehottomasti, mutta yksinkertaisuus tekee siitä houkuttelevan vaihtoehdon. Valitettavasti edistyneempien uudelleenlähetysvaihtoehtojen tutkimusta 802.11-standardiin on rajoitetusti. Tässä diplomityössä esitellään uusi yhdistetty uudelleenlähetysteknologia, joka pohjautuu pakettien uudelleenlähetykseen, sallien turbo-tyylisen dekoodaamisen säilyttäen mahdollisimman hyvän taaksepäin yhteensopivuutta alkuperäisen 802.11-standardin kanssa. Tämä teknologia on simuloitu käyttäen sekä 802.11- että nk. RESCUE-virheenkorjauskoodia. Teknologiassa uusi lomittaja on lisätty konvoluutio-enkoodaajan eteen, sallien tehokkaan iteratiivisen dekoodaamisen, lomittaen joko koko paketin tai ainoastaan hyötykuorman. Vastaanotetuille paketeille tehdään turbo-tyyppinen iteraatio alkuperäisen vastaanotetun kopion ja uudelleenlähetyksien välillä. Tuloksia vertaillaan eiiteratiiviseen yhdistämismenetelmään, maksimisuhdeyhdistelyyn, joka maksimoi yhdistetyn signaali-kohinasuhteen. Tärkeimpänä suunnittelutavoitteena tässä työssä on tehokas uudelleenlähetysmenetelmä, joka ylläpitää taaksepäin yhteensopivuutta IEEE 802.11-standardin kanssa. Muita tavoitteita ovat kantaman lisäys, nopeampi yhteys ja matalampi bitti- ja pakettivirhesuhde. Kehitettyä teknologiaa voidaan käyttää kantaman lisäykseen matalan signaalikohinasuhteen vallitessa ja se on jopa 4 dB parempi kohtuullisella signaalikohinasuhteella kuin maksimisuhdeyhdistely. Korkealla signaali-kohinasuhteella teknologiaa voidaan käyttää pienentämään häviötä epäonnistuneesta paketinlähetyksestä ja täten sallien korkeamman modulaatio-koodiasteen käyttämisen. Valitettavasti nämä parannukset tulevat kasvaneen laskennallisen monimutkaisuuden kustannuksella, johtuen iteratiivisesta dekoodaamisesta. Isoimmat rajoittavat tekijät teknologian käytössä ovat dekoodausvirheet otsikossa ja datamuokkaimen siemenessä. Tämän lisäksi käyttöä rajoittaa resurssisyöppö prosessointi. Simulaatioissa oletetaan täydellinen synkronisointi, mutta todellisuudessa, erityisesti matalalla signaali-kohinasuhteella, paketin tunnistus ja synkronointi voivat olla haasteellisia

    Advanced Equalization Techniques for Digital Coherent Optical Receivers

    Get PDF

    Comparative study of turbo decoding techniques: an overview

    Full text link

    Improved decoder metrics for DS-CDMA in practical 3G systems

    Get PDF
    While 4G mobile networks have been deployed since 2008. In several of the more developed markets, 3G mobile networks are still growing with 3G having the largest market -in terms of number of users- by 2019. 3G networks are based on Direct- Sequence Code-Division Multiple-Access (DS-CDMA). DS-CDMA suffers mainly from the Multiple Access Interference (MAI) and fading. Multi-User Detectors (MUDs) and Error Correcting Codes (ECCs) are the primary means to combat MAI and fading. MUDs, however, suffer from high complexity, including most of sub-optimal algorithms. Hence, most commercial implementations still use conventional single-user matched filter detectors. This thesis proposes improved channel decoder metrics for enhancing uplink performance in 3G systems. The basic idea is to model the MAI as conditionally Gaussian, instead of Gaussian, conditioned on the users’ cross-correlations and/or the channel fading coefficients. The conditioning implies a time-dependent variance that provides enhanced reliability estimates at the decoder inputs. We derive improved log-likelihood ratios (ILLRs) for bit- and chip- asynchronous multipath fading channels. We show that while utilizing knowledge of all users’ code sequences for the ILLR metric is very complicated in chip-asynchronous reception, a simplified expression relying on truncated group delay results in negligible performance loss. We also derive an expression for the error probability using the standard Gaussian approximation for asynchronous channels for the widely used raised cosine pule shaping. Our study framework considers practical 3G systems, with finite interleaving, correlated multipath fading channel models, practical pulse shaping, and system parameters obtained from CDMA2000 standard. Our results show that for the fully practical cellular uplink channel, the performance advantage due to ILLRs is significant and approaches 3 dB
    corecore