594 research outputs found

    Pilot Power Allocation Through User Grouping in Multi-Cell Massive MIMO Systems

    Get PDF
    In this paper, we propose a relative channel estimation error (RCEE) metric, and derive closed-form expressions for its expectation Exprcee\rm {Exp}_{rcee} and the achievable uplink rate holding for any number of base station antennas MM, with the least squares (LS) and minimum mean squared error (MMSE) estimation methods. It is found that RCEE and Exprcee\rm {Exp}_{rcee} converge to the same constant value when MM\rightarrow\infty, resulting in the pilot power allocation (PPA) is substantially simplified and a PPA algorithm is proposed to minimize the average Exprcee\rm {Exp}_{rcee} per user with a total pilot power budget PP in multi-cell massive multiple-input multiple-output systems. Numerical results show that the PPA algorithm brings considerable gains for the LS estimation compared with equal PPA (EPPA), while the gains are only significant with large frequency reuse factor (FRF) for the MMSE estimation. Moreover, for large FRF and large PP, the performance of the LS approaches to the performance of the MMSE, which means that simple LS estimation method is a very viable when co-channel interference is small. For the achievable uplink rate, the PPA scheme delivers almost the same average achievable uplink rate and improves the minimum achievable uplink rate compared with the EPPA scheme.Comment: 30 pages, 5 figures, submitted to IEEE Transactions on Communication

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    Spectral Efficiency Analysis of Multi-Cell Massive MIMO Systems with Ricean Fading

    Get PDF
    This paper investigates the spectral efficiency of multi-cell massive multiple-input multiple-output systems with Ricean fading that utilize the linear maximal-ratio combining detector. We firstly present closed-form expressions for the effective signal-to-interference-plus-noise ratio (SINR) with the least squares and minimum mean squared error (MMSE) estimation methods, respectively, which apply for any number of base-station antennas MM and any Ricean KK-factor. Also, the obtained results can be particularized in Rayleigh fading conditions when the Ricean KK-factor is equal to zero. In the following, novel exact asymptotic expressions of the effective SINR are derived in the high MM and high Ricean KK-factor regimes. The corresponding analysis shows that pilot contamination is removed by the MMSE estimator when we consider both infinite MM and infinite Ricean KK-factor, while the pilot contamination phenomenon persists for the rest of cases. All the theoretical results are verified via Monte-Carlo simulations.Comment: 15 pages, 2 figures, the tenth International Conference on Wireless Communications and Signal Processing (WCSP 2018), to appea
    corecore