575 research outputs found

    Pilot Optimization and Power Allocation for OFDM-based Full-duplex Relay Networks with IQ-imbalances

    Full text link
    In OFDM relay networks with IQ imbalances and full-duplex relay station (RS), how to optimize pilot pattern and power allocation using the criterion of minimizing the sum of mean square errors (Sum-MSE) for the frequency-domain least-squares channel estimator has a heavy impact on self-interference cancellation. Firstly, the design problem of pilot pattern is casted as a convex optimization. From the KKT conditions, the optimal analytical expression is derived given the fixed source power and RS power. Subsequently, an optimal power allocation (OPA) strategy is proposed and presented to further alleviate the effect of Sum-MSE under the total transmit power sum constraint of source node and RS. Simulation results show that the proposed OPA performs better than equal power allocation (EPA) in terms of Sum-MSE, and the Sum-MSE performance gain grows with deviating ρ\rho from the value of ρo\rho^o minimizing the Sum-MSE, where ρ\rho is defined as the average ratio of the residual SI channel at RS to the intended channel from source to RS. For example, the OPA achieves about 5dB SNR gain over EPA by shrinking or stretching ρ\rho with a factor 44. More importantly, as ρ\rho decreases or increases more, the performance gain becomes more significant.Comment: 7 pages, 7 figure

    Complex support vector machines regression for robust channel estimation in LTE downlink system

    Full text link
    In this paper, the problem of channel estimation for LTE Downlink system in the environment of high mobility presenting non-Gaussian impulse noise interfering with reference signals is faced. The estimation of the frequency selective time varying multipath fading channel is performed by using a channel estimator based on a nonlinear complex Support Vector Machine Regression (SVR) which is applied to Long Term Evolution (LTE) downlink. The estimation algorithm makes use of the pilot signals to estimate the total frequency response of the highly selective fading multipath channel. Thus, the algorithm maps trained data into a high dimensional feature space and uses the structural risk minimization principle to carry out the regression estimation for the frequency response function of the fading channel. The obtained results show the effectiveness of the proposed method which has better performance than the conventional Least Squares (LS) and Decision Feedback methods to track the variations of the fading multipath channel.Comment: 13 pages Vol.4, IJCNC (2012) No.1, January 2012. arXiv admin note: substantial text overlap with arXiv:1109.089

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Compressive Massive Random Access for Massive Machine-Type Communications (mMTC)

    Full text link
    In future wireless networks, one fundamental challenge for massive machine-type communications (mMTC) lies in the reliable support of massive connectivity with low latency. Against this background, this paper proposes a compressive sensing (CS)-based massive random access scheme for mMTC by leveraging the inherent sporadic traffic, where both the active devices and their channels can be jointly estimated with low overhead. Specifically, we consider devices in the uplink massive random access adopt pseudo random pilots, which are designed under the framework of CS theory. Meanwhile, the massive random access at the base stations (BS) can be formulated as the sparse signal recovery problem by leveraging the sparse nature of active devices. Moreover, by exploiting the structured sparsity among different receiver antennas and subcarriers, we develop a distributed multiple measurement vector approximate message passing (DMMV-AMP) algorithm for further improved performance. Additionally, the state evolution (SE) of the proposed DMMV-AMP algorithm is derived to predict the performance. Simulation results demonstrate the superiority of the proposed scheme, which exhibits a good tightness with the theoretical SE.Comment: This paper has been accepted by 2018 IEEE GlobalSI

    Efficient Beam Alignment for mmWave Single-Carrier Systems with Hybrid MIMO Transceivers

    Full text link
    Communication at millimeter wave (mmWave) bands is expected to become a key ingredient of next generation (5G) wireless networks. Effective mmWave communications require fast and reliable methods for beamforming at both the User Equipment (UE) and the Base Station (BS) sides, in order to achieve a sufficiently large Signal-to-Noise Ratio (SNR) after beamforming. We refer to the problem of finding a pair of strongly coupled narrow beams at the transmitter and receiver as the Beam Alignment (BA) problem. In this paper, we propose an efficient BA scheme for single-carrier mmWave communications. In the proposed scheme, the BS periodically probes the channel in the downlink via a pre-specified pseudo-random beamforming codebook and pseudo-random spreading codes, letting each UE estimate the Angle-of-Arrival / Angle-of-Departure (AoA-AoD) pair of the multipath channel for which the energy transfer is maximum. We leverage the sparse nature of mmWave channels in the AoA-AoD domain to formulate the BA problem as the estimation of a sparse non-negative vector. Based on the recently developed Non-Negative Least Squares (NNLS) technique, we efficiently find the strongest AoA-AoD pair connecting each UE to the BS. We evaluate the performance of the proposed scheme under a realistic channel model, where the propagation channel consists of a few multipath scattering components each having different delays, AoAs-AoDs, and Doppler shifts.The channel model parameters are consistent with experimental channel measurements. Simulation results indicate that the proposed method is highly robust to fast channel variations caused by the large Doppler spread between the multipath components. Furthermore, we also show that after achieving BA the beamformed channel is essentially frequency-flat, such that single-carrier communication needs no equalization in the time domain

    A Block Sparsity Based Estimator for mmWave Massive MIMO Channels with Beam Squint

    Full text link
    Multiple-input multiple-output (MIMO) millimeter wave (mmWave) communication is a key technology for next generation wireless networks. One of the consequences of utilizing a large number of antennas with an increased bandwidth is that array steering vectors vary among different subcarriers. Due to this effect, known as beam squint, the conventional channel model is no longer applicable for mmWave massive MIMO systems. In this paper, we study channel estimation under the resulting non-standard model. To that aim, we first analyze the beam squint effect from an array signal processing perspective, resulting in a model which sheds light on the angle-delay sparsity of mmWave transmission. We next design a compressive sensing based channel estimation algorithm which utilizes the shift-invariant block-sparsity of this channel model. The proposed algorithm jointly computes the off-grid angles, the off-grid delays, and the complex gains of the multi-path channel. We show that the newly proposed scheme reflects the mmWave channel more accurately and results in improved performance compared to traditional approaches. We then demonstrate how this approach can be applied to recover both the uplink as well as the downlink channel in frequency division duplex (FDD) systems, by exploiting the angle-delay reciprocity of mmWave channels

    Compressed Channel Estimation with Position-Based ICI Elimination for High-Mobility SIMO-OFDM Systems

    Full text link
    Orthogonal frequency-division multiplexing (OFDM) is widely adopted for providing reliable and high data rate communication in high-speed train systems. However, with the increasing train mobility, the resulting large Doppler shift introduces intercarrier interference (ICI) in OFDM systems and greatly degrades the channel estimation accuracy. Therefore, it is necessary and important to investigate reliable channel estimation and ICI mitigation methods in high-mobility environments. In this paper, we consider a typical HST communication system and show that the ICI caused by the large Doppler shift can be mitigated by exploiting the train position information as well as the sparsity of the conventional basis expansion model (BEM) based channel model. Then, we show that for the complex-exponential BEM (CE-BEM) based channel model, the ICI can be completely eliminated to get the ICI-free pilots at each receive antenna. After that, we propose a new pilot pattern design algorithm to reduce the system coherence and hence can improve the compressed sensing (CS) based channel estimation accuracy. The proposed optimal pilot pattern is independent of the number of receive antennas, the Doppler shifts, the train position, or the train speed. Simulation results confirms the performance merits of the proposed scheme in high-mobility environments. In addition, it is also shown that the proposed scheme is robust to the respect of high mobility

    High-Dimensional CSI Acquisition in Massive MIMO: Sparsity-Inspired Approaches

    Full text link
    Massive MIMO has been regarded as one of the key technologies for 5G wireless networks, as it can significantly improve both the spectral efficiency and energy efficiency. The availability of high-dimensional channel side information (CSI) is critical for its promised performance gains, but the overhead of acquiring CSI may potentially deplete the available radio resources. Fortunately, it has recently been discovered that harnessing various sparsity structures in massive MIMO channels can lead to significant overhead reduction, and thus improve the system performance. This paper presents and discusses the use of sparsity-inspired CSI acquisition techniques for massive MIMO, as well as the underlying mathematical theory. Sparsity-inspired approaches for both frequency-division duplexing and time-division duplexing massive MIMO systems will be examined and compared from an overall system perspective, including the design trade-offs between the two duplexing modes, computational complexity of acquisition algorithms, and applicability of sparsity structures. Meanwhile, some future prospects for research on high-dimensional CSI acquisition to meet practical demands will be identified.Comment: 15 pages, 3 figures, 1 table, submitted to IEEE Systems Journal Special Issue on 5G Wireless Systems with Massive MIM

    Channel Estimation and ICI Cancelation in Vehicular Channels of OFDM Wireless Communication Systems

    Full text link
    Orthogonal frequency division multiplexing (OFDM) scheme increases bandwidth efficiency (BE) of data transmission and eliminates inter symbol interference (ISI). As a result, it has been widely used for wideband communication systems that have been developed during the past two decades and it can be a good candidate for the emerging communication systems such as fifth generation (5G) cellular networks with high carrier frequency and communication systems of high speed vehicles such as high speed trains (HSTs) and supersonic unmanned aircraft vehicles (UAVs). However, the employment of OFDM for those upcoming systems is challenging because of high Doppler shifts. High Doppler shift makes the wideband communication channel to be both frequency selective and time selective, doubly selective (DS), causes inter carrier interference (ICI) and destroys the orthogonality between the subcarriers of OFDM signal. In order to demodulate the signal in OFDM systems and mitigate ICIs, channel state information (CSI) is required. In this work, we deal with channel estimation (CE) and ICI cancellation in DS vehicular channels. The digitized model of the DS channels can be short and dense, or long and sparse. CE methods that perform well for short and dense channels are highly inefficient for long and sparse channels. As a result, for the latter type of channels, we proposed the employment of compressed sensing (CS) based schemes for estimating the channel. In addition, we extended our CE methods for multiple input multiple output (MIMO) scenarios. We evaluated the CE accuracy and data demodulation fidelity, along with the BE and computational complexity of our methods and compared the results with the previous CE procedures in different environments. The simulation results indicate that our proposed CE methods perform considerably better than the conventional CE schemes

    Spatial- and Frequency-Wideband Effects in Millimeter-Wave Massive MIMO Systems

    Full text link
    When there are a large number of antennas in massive MIMO systems, the transmitted wideband signal will be sensitive to the physical propagation delay of electromagnetic waves across the large array aperture, which is called the spatial-wideband effect. In this scenario, transceiver design is different from most of the existing works, which presume that the bandwidth of the transmitted signals is not that wide, ignore the spatial-wideband effect, and only address the frequency selectivity. In this paper, we investigate spatial- and frequency-wideband effects, called dual-wideband effects, in massive MIMO systems from array signal processing point of view. Taking mmWave-band communications as an example, we describe the transmission process to address the dual-wideband effects. By exploiting the channel sparsity in the angle domain and the delay domain, we develop the efficient uplink and downlink channel estimation strategies that require much less amount of training overhead and cause no pilot contamination. Thanks to the array signal processing techniques, the proposed channel estimation is suitable for both TDD and FDD massive MIMO systems. Numerical examples demonstrate that the proposed transmission design for massive MIMO systems can effectively deal with the dual-wideband effects.Comment: 13 pages, 10 figures. Index terms: Massive MIMO, mmWave, array signal processing, wideband, spatial-wideband, beam squint, angle reciprocity, delay reciprocity. Submitted to IEEE Transactions on Signal Processin
    corecore