880 research outputs found

    Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke

    Get PDF
    Abstract Background Impairment of upper extremity function is a common outcome following stroke, to the detriment of lifestyle and employment opportunities. Yet, access to treatment may be limited due to geographical and transportation constraints, especially for those living in rural areas. While stroke rates are higher in these areas, stroke survivors in these regions of the country have substantially less access to clinical therapy. Home therapy could offer an important alternative to clinical treatment, but the inherent isolation and the monotony of self-directed training can greatly reduce compliance. Methods We developed a 3D, networked multi-user Virtual Environment for Rehabilitative Gaming Exercises (VERGE) system for home therapy. Within this environment, stroke survivors can interact with therapists and/or fellow stroke survivors in the same virtual space even though they may be physically remote. Each user’s own movement controls an avatar through kinematic measurements made with a low-cost, Kinect™ device. The system was explicitly designed to train movements important to rehabilitation and to provide real-time feedback of performance to users and clinicians. To obtain user feedback about the system, 15 stroke survivors with chronic upper extremity hemiparesis participated in a multisession pilot evaluation study, consisting of a three-week intervention in a laboratory setting. For each week, the participant performed three one-hour training sessions with one of three modalities: 1) VERGE system, 2) an existing virtual reality environment based on Alice in Wonderland (AWVR), or 3) a home exercise program (HEP). Results Over 85% of the subjects found the VERGE system to be an effective means of promoting repetitive practice of arm movement. Arm displacement averaged 350 m for each VERGE training session. Arm displacement was not significantly less when using VERGE than when using AWVR or HEP. Participants were split on preference for VERGE, AWVR or HEP. Importantly, almost all subjects indicated a willingness to perform the training for at least 2–3 days per week at home. Conclusions Multi-user VR environments hold promise for home therapy, although the importance of reducing complexity of operation for the user in the VR system must be emphasized. A modified version of the VERGE system is currently being used in a home therapy study

    Bimanual wheelchair propulsion by people with severe hemiparesis after stroke

    Get PDF
    Purpose: Individuals who require manual wheelchairs after stroke are typically taught to ambulate with compensatory propulsion (i.e., using their non-paretic arm and foot), risking disuse of the paretic arm. We investigated whether stroke survivors can instead ambulate in a bimanual, lever-driven wheelchair that requires the paretic arm to contribute half the propulsive input. Materials and methods: Seventeen individuals with chronic stroke and severe hemiparesis (upper extremity Fugl–Meyer scores between 10 and 24) participated across two experiments. In the first experiment, participants (n = 12) ambulated in straight paths. In the second experiment, participants (n = 12) also performed turns, using an improved version of the wheelchair that incorporated handbrakes. Twelve unimpaired controls also completed the second experiment. Motion capture and EMG were used to compare biomechanics between groups. Results: Altogether, 15 of 17 participants with stroke could ambulate 30 m in straight paths, and 9 of 12 could turn 1800° entirely under the power of their paretic arm. Participants with stroke exhibited largely healthy biomechanics, with minimal shoulder hiking/leaning or trunk inclination. Their arm muscle EMG patterns were similar to those used by unimpaired participants, excepting delayed elbow extensor activation. Conclusions: Individuals with severe arm impairment in the chronic stage of stroke retain sufficient strength and coordination with their paretic arm to manoeuvre bimanual, lever-driven wheelchairs. We suggest bimanual, lever-driven propulsion should be explored in stroke rehabilitation practice as an alternative to compensatory wheelchair propulsion, as it has the potential to exercise healthy movement synergies, which may in turn help drive use-dependent motor recovery.Implications for rehabilitation Severe arm impairment arising after stroke does not generally eliminate the motor dexterity needed to bimanually propel a manual wheelchair, provided that the wheelchair is modified to remove the requirement to grasp and release the push rim. Such exercise appears a good candidate to facilitate rehabilitation outcomes because it depends on alternating muscle activity and improving elbow extension. Such wheelchair propulsion involves largely normal biomechanics; shoulder hiking and leaning are absent and trunk inclination is rare

    Understanding older adults’ perceptions of and attitudes towards exergames

    Get PDF
    Purpose Maintaining physical activity is a key component of successful aging and has benefits for both physical and cognitive functioning in the older adult population. One promising method for engaging in physical activity is through exergames, which are video games designed to promote exercise. Exergames have the potential to be used by a wide range of people, including older adults, in a variety of settings, such as at home, in community living environments, or senior centers. However, exergames have not been designed for older adults (e.g., with respect to their attitudes, needs). Thus, older adults may not adopt these systems if they perceive them as not useful or relevant to them. Method Twenty older adults (aged 60-79) interacted with two exergames, and were then interviewed about their perceptions of the system’s ease of use and usefulness, as well as their general attitudes towards the system. Results Participants identified the potential for exergames’ usefulness for various goals, such as to increase their physical activity. However, they also reported negative attitudes concerning the system, including perceiving barriers to system use. Overall, participants said they would use the system in the future and recommend it to other people at their age for improving health, despite these use challenges. Conclusion The older adults were open to adopting exergames, which could provide opportunities to increase physical activity. Given the participants’ overall positive perceptions of the usefulness of exergames, designers must address the perceived challenges of using these systems. Understanding barriers and facilitators for older adults’ use of exergames can guide design, training, and adoption of these systems

    Motion-Based Video Games for Stroke Rehabilitation with Reduced Compensatory Motions

    Get PDF
    Stroke is the leading cause of long-term disability among adults in industrialized nations, with 80% of people who survive strokes experiencing motor disabilities. Recovery requires daily exercise with a high number of repetitions, often without therapist supervision. Motion-based video games can help motivate people with stroke to perform the necessary exercises to recover. We explore the design space of video games for stroke rehabilitation using Wii remotes and webcams as input devices, and share the lessons we learned about what makes games therapeutically useful. We demonstrate the feasibility of using games for home-based stroke therapy with a six-week case study. We show that exercise with games can help recovery even 17 years after the stroke, and share the lessons that we learned for game systems to be used at home as a part of outpatient therapy. As a major issue with home-based therapy, we identify that unsupervised exercises lead to compensatory motions that can impede recovery and create new health issues. We reliably detect torso compensation in shoulder exercises using a custom harness, and develop a game that meaningfully uses both exercise and compensation as inputs. We provide in-game feedback that reduces compensation in a number of ways. We evaluate alternative ways for reducing compensation in controlled experiments and show that using techniques from operant conditioning are effective in significantly reducing compensatory behavior compared to existing approaches

    Restorative virtual environments for rehabilitation: interactive technologies for enhanced recovery following critical illness and injury

    Get PDF
    The expectation for patients surviving admission to the Intensive Care Unit (ICU) is that they make the best possible functional recovery. Rehabilitation from the point of physiological stability is directed at reducing the impact of the consequences of critical illness. It was proposed that interactive technologies (iTech) could be used by patients on the ICU to enhance their trajectory and experience of recovery. The aim of this research was to develop and evaluate methodologies to investigate the feasibility of introducing novel iTech-based systems to the ICU. Four novel Virtual Natural Environments were combined with commercial-off-the-shelf technologies to produce interventions to improve pain management and sleep and enhance deep breathing and cycling exercises. Cohort and intervention choice were informed by the development of programme theories describing how the interventions might work. These were further developed and used to investigate mediators and modifiers of response to the interventions. Human Centred Design and Usability Engineering techniques were combined with methods to evaluate complex interventions in clinical settings. The four feasibility studies developed and refined methodologies to evaluate their usefulness and effectiveness. This research concludes with lessons learned and a guide to inform future development and implementation
    • …
    corecore