638 research outputs found

    Pilot contamination for active eavesdropping

    No full text
    Abstract—Existing studies on physical layer security often assume the availability of perfect channel state information (CSI) and overlook the importance of channel training needed for obtaining the CSI. In this letter, we discuss how an active eavesdropper can attack the training phase in wireless communication to improve its eavesdropping performance. We derive a new security attack from the pilot contamination phenomenon, which targets at systems using reverse training to obtain the CSI at the transmitter for precoder design. This attack changes the precoder used by the legitimate transmitter in a controlled manner to strengthen the signal reception at the eavesdropper during data transmission. Furthermore, we discuss an efficient use of the transmission energy of an advanced full-duplex eavesdropper to simultaneously achieve a satisfactory eavesdropping performance whilst degrading the detection performance of the legitimate receiver.This work was supported by the Australian Research Council's Discovery Projects funding scheme (project no. DP110102548) and the Research Council of Norway through the project 197565/V30

    A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems

    Get PDF
    Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.Comment: accepted for publication in IEEE Transactions on Communication

    Secure Massive MIMO Transmission in the Presence of an Active Eavesdropper

    Full text link
    In this paper, we investigate secure and reliable transmission strategies for multi-cell multi-user massive multiple-input multiple-output (MIMO) systems in the presence of an active eavesdropper. We consider a time-division duplex system where uplink training is required and an active eavesdropper can attack the training phase to cause pilot contamination at the transmitter. This forces the precoder used in the subsequent downlink transmission phase to implicitly beamform towards the eavesdropper, thus increasing its received signal power. We derive an asymptotic achievable secrecy rate for matched filter precoding and artificial noise (AN) generation at the transmitter when the number of transmit antennas goes to infinity. For the achievability scheme at hand, we obtain the optimal power allocation policy for the transmit signal and the AN in closed form. For the case of correlated fading channels, we show that the impact of the active eavesdropper can be completely removed if the transmit correlation matrices of the users and the eavesdropper are orthogonal. Inspired by this result, we propose a precoder null space design exploiting the low rank property of the transmit correlation matrices of massive MIMO channels, which can significantly degrade the eavesdropping capabilities of the active eavesdropper.Comment: To appear in ICC 1

    Jamming Resistant Receivers for Massive MIMO

    Full text link
    We design jamming resistant receivers to enhance the robustness of a massive MIMO uplink channel against jamming. In the pilot phase, we estimate not only the desired channel, but also the jamming channel by exploiting purposely unused pilot sequences. The jamming channel estimate is used to construct the linear receive filter to reduce impact that jamming has on the achievable rates. The performance of the proposed scheme is analytically and numerically evaluated. These results show that the proposed scheme greatly improves the rates, as compared to conventional receivers. Moreover, the proposed schemes still work well with stronger jamming power.Comment: Accepted in the 42nd IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP2017

    To Obtain or not to Obtain CSI in the Presence of Hybrid Adversary

    Full text link
    We consider the wiretap channel model under the presence of a hybrid, half duplex adversary that is capable of either jamming or eavesdropping at a given time. We analyzed the achievable rates under a variety of scenarios involving different methods for obtaining transmitter CSI. Each method provides a different grade of information, not only to the transmitter on the main channel, but also to the adversary on all channels. Our analysis shows that main CSI is more valuable for the adversary than the jamming CSI in both delay-limited and ergodic scenarios. Similarly, in certain cases under the ergodic scenario, interestingly, no CSI may lead to higher achievable secrecy rates than with CSI.Comment: 8 pages, 3 figure
    corecore