7 research outputs found

    Piles of Cubes, Monotone Path Polytopes and Hyperplane Arrangements

    Full text link
    Monotone path polytopes arise as a special case of the construction of fiber polytopes, introduced by Billera and Sturmfels. A simple example is provided by the permutahedron, which is a monotone path polytope of the standard unit cube. The permutahedron is the zonotope polar to the braid arrangement. We show how the zonotopes polar to the cones of certain deformations of the braid arrangement can be realized as monotone path polytopes. The construction is an extension of that of the permutahedron and yields interesting connections between enumerative combinatorics of hyperplane arrangements and geometry of monotone path polytopes

    Fiber polytopes for the projections between cyclic polytopes

    Full text link
    The cyclic polytope C(n,d)C(n,d) is the convex hull of any nn points on the moment curve (t,t2,...,td):tR{(t,t^2,...,t^d):t \in \reals} in Rd\reals^d. For d>dd' >d, we consider the fiber polytope (in the sense of Billera and Sturmfels) associated to the natural projection of cyclic polytopes π:C(n,d)C(n,d)\pi: C(n,d') \to C(n,d) which "forgets" the last ddd'-d coordinates. It is known that this fiber polytope has face lattice indexed by the coherent polytopal subdivisions of C(n,d)C(n,d) which are induced by the map π\pi. Our main result characterizes the triples (n,d,d)(n,d,d') for which the fiber polytope is canonical in either of the following two senses: - all polytopal subdivisions induced by π\pi are coherent, - the structure of the fiber polytope does not depend upon the choice of points on the moment curve. We also discuss a new instance with a positive answer to the Generalized Baues Problem, namely that of a projection π:PQ\pi:P\to Q where QQ has only regular subdivisions and PP has two more vertices than its dimension.Comment: 28 pages with 1 postscript figur

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version

    Packing and covering in combinatorics

    Get PDF
    corecore