7,650 research outputs found

    Reconfiguration of 3D Crystalline Robots Using O(log n) Parallel Moves

    Full text link
    We consider the theoretical model of Crystalline robots, which have been introduced and prototyped by the robotics community. These robots consist of independently manipulable unit-square atoms that can extend/contract arms on each side and attach/detach from neighbors. These operations suffice to reconfigure between any two given (connected) shapes. The worst-case number of sequential moves required to transform one connected configuration to another is known to be Theta(n). However, in principle, atoms can all move simultaneously. We develop a parallel algorithm for reconfiguration that runs in only O(log n) parallel steps, although the total number of operations increases slightly to Theta(nlogn). The result is the first (theoretically) almost-instantaneous universally reconfigurable robot built from simple units.Comment: 21 pages, 10 figure

    Strings in Singular Time-Dependent Backgrounds

    Full text link
    We review the construction of time-dependent backgrounds with space-like singularities. We mainly consider exact CFT backgrounds. The algebraic and geometric aspects of these backgrounds are discussed. Physical issues, results and difficulties associated with such systems are reviewed. Finally, we present some new results: a two dimensional cosmology in the presence of an Abelian gauge field described within a family of (SL(2)xU(1))/(U(1)xZ) quotient CFTs.Comment: 22 pages, 4 figures, Contribution to the proceedings of Symposium Ahrenshoop, August 200

    Generalizing Boolean Satisfiability III: Implementation

    Full text link
    This is the third of three papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high-performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal has been to define a representation in which this structure is apparent and can be exploited to improve computational performance. The first paper surveyed existing work that (knowingly or not) exploited problem structure to improve the performance of satisfiability engines, and the second paper showed that this structure could be understood in terms of groups of permutations acting on individual clauses in any particular Boolean theory. We conclude the series by discussing the techniques needed to implement our ideas, and by reporting on their performance on a variety of problem instances

    Random Matrices with Slow Correlation Decay

    Get PDF
    We consider large random matrices with a general slowly decaying correlation among its entries. We prove universality of the local eigenvalue statistics and optimal local laws for the resolvent away from the spectral edges, generalizing the recent result of [arXiv:1604.08188] to allow slow correlation decay and arbitrary expectation. The main novel tool is a systematic diagrammatic control of a multivariate cumulant expansion.Comment: 41 pages, 1 figure. We corrected a typo in (4.1b

    On sets defining few ordinary planes

    Get PDF
    Let S be a set of n points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of S is less than (Formula presented.) for some (Formula presented.) then, for n sufficiently large, all but at most O(K) points of S are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant c such that if the number of planes incident with exactly three points of S is less than (Formula presented.) then, for n sufficiently large, S is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let S be a set of n points in the real plane. If the number of circles incident with exactly three points of S is less than (Formula presented.) for some (Formula presented.) then, for n sufficiently large, all but at most O(K) points of S are contained in a curve of degree at most four.Postprint (updated version

    An Atypical Survey of Typical-Case Heuristic Algorithms

    Full text link
    Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.Comment: This article is currently scheduled to appear in the December 2012 issue of SIGACT New

    Small ball probability, Inverse theorems, and applications

    Full text link
    Let ξ\xi be a real random variable with mean zero and variance one and A=a1,...,anA={a_1,...,a_n} be a multi-set in Rd\R^d. The random sum SA:=a1ξ1+...+anξnS_A := a_1 \xi_1 + ... + a_n \xi_n where ξi\xi_i are iid copies of ξ\xi is of fundamental importance in probability and its applications. We discuss the small ball problem, the aim of which is to estimate the maximum probability that SAS_A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdos almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets AA where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.Comment: 47 page
    corecore