678 research outputs found

    Typing Context-Dependent Behavioural Variation

    Get PDF
    Context Oriented Programming (COP) concerns the ability of programs to adapt to changes in their running environment. A number of programming languages endowed with COP constructs and features have been developed. However, some foundational issues remain unclear. This paper proposes adopting static analysis techniques to reason on and predict how programs adapt their behaviour. We introduce a core functional language, ContextML, equipped with COP primitives for manipulating contexts and for programming behavioural variations. In particular, we specify the dispatching mechanism, used to select the program fragments to be executed in the current active context. Besides the dynamic semantics we present an annotated type system. It guarantees that the well-typed programs adapt to any context, i.e. the dispatching mechanism always succeeds at run-time.Comment: In Proceedings PLACES 2012, arXiv:1302.579

    Event-driven Adaptation in COP

    Full text link
    Context-Oriented Programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes an extension of ML_CoDa to deal with adaptation to unpredictable context changes notified by asynchronous events.Comment: In Proceedings PLACES 2016, arXiv:1606.0540

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    Tracing where IoT data are collected and aggregated

    Get PDF
    The Internet of Things (IoT) offers the infrastructure of the information society. It hosts smart objects that automatically collect and exchange data of various kinds, directly gathered from sensors or generated by aggregations. Suitable coordination primitives and analysis mechanisms are in order to design and reason about IoT systems, and to intercept the implied technological shifts. We address these issues from a foundational point of view. To study them, we define IoT-LySa, a process calculus endowed with a static analysis that tracks the provenance and the manipulation of IoT data, and how they flow in the system. The results of the analysis can be used by a designer to check the behaviour of smart objects, in particular to verify non-functional properties, among which security

    A Two-Component Language for Adaptation: Design, Semantics, and Program Analysis

    Get PDF

    A Process Calculus for Molecular Interaction Maps

    Full text link
    We present the MIM calculus, a modeling formalism with a strong biological basis, which provides biologically-meaningful operators for representing the interaction capabilities of molecular species. The operators of the calculus are inspired by the reaction symbols used in Molecular Interaction Maps (MIMs), a diagrammatic notation used by biologists. Models of the calculus can be easily derived from MIM diagrams, for which an unambiguous and executable interpretation is thus obtained. We give a formal definition of the syntax and semantics of the MIM calculus, and we study properties of the formalism. A case study is also presented to show the use of the calculus for modeling biomolecular networks.Comment: 15 pages; 8 figures; To be published on EPTCS, proceedings of MeCBIC 200
    • …
    corecore