8,039 research outputs found

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data

    Bivariate Hermite subdivision

    Get PDF
    A subdivision scheme for constructing smooth surfaces interpolating scattered data in R3\mathbb{R}^3 is proposed. It is also possible to impose derivative constraints in these points. In the case of functional data, i.e., data are given in a properly triangulated set of points {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N from which none of the pairs (xi,yi)(x_i,y_i) and (xj,yj)(x_j,y_j) with i≠ji\neq j coincide, it is proved that the resulting surface (function) is C1C^1. The method is based on the construction of a sequence of continuous splines of degree 3. Another subdivision method, based on constructing a sequence of splines of degree 5 which are once differentiable, yields a function which is C2C^2 if the data are not 'too irregular'. Finally the approximation properties of the methods are investigated

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    Double Bubbles Minimize

    Full text link
    The classical isoperimetric inequality in R^3 states that the surface of smallest area enclosing a given volume is a sphere. We show that the least area surface enclosing two equal volumes is a double bubble, a surface made of two pieces of round spheres separated by a flat disk, meeting along a single circle at an angle of 120 degrees.Comment: 57 pages, 32 figures. Includes the complete code for a C++ program as described in the article. You can obtain this code by viewing the source of this articl

    A Trace Finite Element Method for Vector-Laplacians on Surfaces

    Full text link
    We consider a vector-Laplace problem posed on a 2D surface embedded in a 3D domain, which results from the modeling of surface fluids based on exterior Cartesian differential operators. The main topic of this paper is the development and analysis of a finite element method for the discretization of this surface partial differential equation. We apply the trace finite element technique, in which finite element spaces on a background shape-regular tetrahedral mesh that is surface-independent are used for discretization. In order to satisfy the constraint that the solution vector field is tangential to the surface we introduce a Lagrange multiplier. We show well-posedness of the resulting saddle point formulation. A discrete variant of this formulation is introduced which contains suitable stabilization terms and is based on trace finite element spaces. For this method we derive optimal discretization error bounds. Furthermore algebraic properties of the resulting discrete saddle point problem are studied. In particular an optimal Schur complement preconditioner is proposed. Results of a numerical experiment are included

    Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

    Get PDF
    In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd\mathbb{R}^d, d=2,3d=2,3. The method employs discontinuous piecewise linear in time -- continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite element spaces consist of traces of standard volumetric elements on a space-time manifold resulting from the evolution of a surface. We prove first order convergence in space and time of the method in an energy norm and second order convergence in a weaker norm. Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in a duality argument used in the proof of the second order convergence estimate
    • …
    corecore