259 research outputs found

    A unified framework for bivariate clustering and regression problems via mixed-integer linear programming

    Get PDF
    Clustering and regression are two of the most important problems in data analysis and machine learning. Recently, mixed-integer linear programs (MILPs) have been presented in the literature to solve these problems. By modelling the problems as MILPs, they are able to be solved very quickly by commercial solvers. In particular, MILPs for bivariate clusterwise linear regression (CLR) and (continuous) piecewise linear regression (PWLR) have recently appeared. These MILP models make use of binary variables and logical implications modelled through big-M\mathcal{M} constraints. In this paper, we present these models in the context of a unifying MILP framework for bivariate clustering and regression problems. We then present two new formulations within this framework, the first for ordered CLR, and the second for clusterwise piecewise linear regression (CPWLR). The CPWLR problem concerns simultaneously clustering discrete data, while modelling each cluster with a continuous PWL function. Extending upon the framework, we discuss how outlier detection can be implemented within the models, and how specific decomposition methods can be used to find speedups in the runtime. Experimental results show when each model is the most effective
    corecore