2,298 research outputs found

    Paraiso : An Automated Tuning Framework for Explicit Solvers of Partial Differential Equations

    Full text link
    We propose Paraiso, a domain specific language embedded in functional programming language Haskell, for automated tuning of explicit solvers of partial differential equations (PDEs) on GPUs as well as multicore CPUs. In Paraiso, one can describe PDE solving algorithms succinctly using tensor equations notation. Hydrodynamic properties, interpolation methods and other building blocks are described in abstract, modular, re-usable and combinable forms, which lets us generate versatile solvers from little set of Paraiso source codes. We demonstrate Paraiso by implementing a compressive hydrodynamics solver. A single source code less than 500 lines can be used to generate solvers of arbitrary dimensions, for both multicore CPUs and GPUs. We demonstrate both manual annotation based tuning and evolutionary computing based automated tuning of the program.Comment: 52 pages, 14 figures, accepted for publications in Computational Science and Discover

    Affine Modeling of Program Traces

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions on Computers. The final authenticated version is available online at: http://dx.doi.org/10.1109/TC.2018.2853747[Abstract] A formal, high-level representation of programs is typically needed for static and dynamic analyses performed by compilers. However, the source code of target applications is not always available in an analyzable form, e.g., to protect intellectual property. To reason on such applications it becomes necessary to build models from observations of its execution. This paper presents an algebraic approach which, taking as input the trace of memory addresses accessed by a single memory reference, synthesizes an affine loop with a single perfectly nested statement that generates the original trace. This approach is extended to support the synthesis of unions of affine loops, useful for minimally modeling traces generated by automatic transformations of polyhedral programs, such as tiling. The resulting system is capable of processing hundreds of gigabytes of trace data in minutes, minimally reconstructing 100 percent of the static control parts in PolyBench/C applications and 99.9 percent in the Pluto-tiled versions of these benchmarks.Ministerio de EconomĂ­a y Competitividad; TIN2016-75845-PNational Science Foundation (Estados Unidos); 1626251National Science Foundation (Estados Unidos); 1409095National Science Foundation (Estados Unidos); 1439057National Science Foundation (Estados Unidos); 1213052National Science Foundation (Estados Unidos); 1439021National Science Foundation (Estados Unidos); 162912

    GPU in Physics Computation: Case Geant4 Navigation

    Full text link
    General purpose computing on graphic processing units (GPU) is a potential method of speeding up scientific computation with low cost and high energy efficiency. We experimented with the particle physics simulation toolkit Geant4 used at CERN to benchmark its geometry navigation functionality on a GPU. The goal was to find out whether Geant4 physics simulations could benefit from GPU acceleration and how difficult it is to modify Geant4 code to run in a GPU. We ported selected parts of Geant4 code to C99 & CUDA and implemented a simple gamma physics simulation utilizing this code to measure efficiency. The performance of the program was tested by running it on two different platforms: NVIDIA GeForce 470 GTX GPU and a 12-core AMD CPU system. Our conclusion was that GPUs can be a competitive alternate for multi-core computers but porting existing software in an efficient way is challenging
    • …
    corecore