1,121 research outputs found

    Piecewise Affine Registration of Biological Images for Volume Reconstruction

    Get PDF
    This manuscript tackles the reconstruction of 3D volumes via mono-modal registration of series of 2D biological images (histological sections, autoradiographs, cryosections, etc.). The process of acquiring these images typically induces composite transformations that we model as a number of rigid or affine local transformations embedded in an elastic one. We propose a registration approach closely derived from this model. Given a pair of input images, we first compute a dense similarity field between them with a block matching algorithm. We use as a similarity measure an extension of the classical correlation coefficient that improves the consistency of the field. A hierarchical clustering algorithm then automatically partitions the field into a number of classes from which we extract independent pairs of sub-images. Our clustering algorithm relies on the Earth mover’s distribution metric and is additionally guided by robust least-square estimation of the transformations associated with each cluster. Finally, the pairs of sub-images are, independently, affinely registered and a hybrid affine/non-linear interpolation scheme is used to compose the output registered image. We investigate the behavior of our approach on several batches of histological data and discuss its sensitivity to parameters and noise

    Large Deformation Diffeomorphic Metric Mapping Registration of Reconstructed 3D Histological Section Images and in vivo MR Images

    Get PDF
    Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI) and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1) manual segmentation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) compartments in histological sections, (2) alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3) registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4) intensity normalization of images via histogram matching, and (5) registration of the volumes via intensity based large deformation diffeomorphic metric (LDDMM) image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39 ± 0.13 mm) compared to distances after affine registration (0.76 ± 0.41 mm). Similarly, WM/GM distances decreased to 0.28 ± 0.16 mm after LDDMM compared to 0.54 ± 0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, for example, receptor distributions, gene expression, onto MRI volumes

    Numerical methods for polyline‐to‐point‐cloud registration with applications to patient‐specific stent reconstruction

    Full text link
    We present novel numerical methods for polyline‐to‐point‐cloud registration and their application to patient‐specific modeling of deployed coronary artery stents from image data. Patient‐specific coronary stent reconstruction is an important challenge in computational hemodynamics and relevant to the design and improvement of the prostheses. It is an invaluable tool in large‐scale clinical trials that computationally investigate the effect of new generations of stents on hemodynamics and eventually tissue remodeling. Given a point cloud of strut positions, which can be extracted from images, our stent reconstruction method aims at finding a geometrical transformation that aligns a model of the undeployed stent to the point cloud. Mathematically, we describe the undeployed stent as a polyline, which is a piecewise linear object defined by its vertices and edges. We formulate the nonlinear registration as an optimization problem whose objective function consists of a similarity measure, quantifying the distance between the polyline and the point cloud, and a regularization functional, penalizing undesired transformations. Using projections of points onto the polyline structure, we derive novel distance measures. Our formulation supports most commonly used transformation models including very flexible nonlinear deformations. We also propose 2 regularization approaches ensuring the smoothness of the estimated nonlinear transformation. We demonstrate the potential of our methods using an academic 2D example and a real‐life 3D bioabsorbable stent reconstruction problem. Our results show that the registration problem can be solved to sufficient accuracy within seconds using only a few number of Gauss‐Newton iterations.We present novel numerical methods for nonlinear polyline‐to‐point‐cloud registration and their application to patient‐specific modeling of deployed coronary artery stents from image data. We design a general and mathematically sound framework that includes novel (almost everywhere) differentiable distance measures and 2 new regularization approaches to overcome the ill‐posedness and enable robust registration in the presence of outliers. We demonstrate that 3D registration problem arising in stent reconstruction can be solved within seconds using only a small number of Gauss‐Newton iterations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142552/1/cnm2934.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142552/2/cnm2934_am.pd

    Joint denoising and distortion correction of atomic scale scanning transmission electron microscopy images

    Full text link
    Nowadays, modern electron microscopes deliver images at atomic scale. The precise atomic structure encodes information about material properties. Thus, an important ingredient in the image analysis is to locate the centers of the atoms shown in micrographs as precisely as possible. Here, we consider scanning transmission electron microscopy (STEM), which acquires data in a rastering pattern, pixel by pixel. Due to this rastering combined with the magnification to atomic scale, movements of the specimen even at the nanometer scale lead to random image distortions that make precise atom localization difficult. Given a series of STEM images, we derive a Bayesian method that jointly estimates the distortion in each image and reconstructs the underlying atomic grid of the material by fitting the atom bumps with suitable bump functions. The resulting highly non-convex minimization problems are solved numerically with a trust region approach. Well-posedness of the reconstruction method and the model behavior for faster and faster rastering are investigated using variational techniques. The performance of the method is finally evaluated on both synthetic and real experimental data

    Model-based registration for pneumothorax deformation analysis using intraoperative cone-beam CT images

    Get PDF
    [2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 20-24 July 2020, Montreal, QC, Canada]Because the lung deforms during surgery because of pneumothorax, it is important to be able to track the location of a tumor. Deformation of the whole lung can be estimated using intraoperative cone-beam CT (CBCT) images. In this study, we used deformable mesh registration methods for paired CBCT images in the inflated and deflated states, and analyzed their deformation. We proposed a deformable mesh registration framework for deformations of partial organ shapes involving large deformation and rotation. Experimental results showed that the proposed methods reduced errors in point-to-point correspondence. As a result of registration using surgical clips placed on the lung surface during imaging, it was confirmed that an average error of 3.9 mm occurred in eight cases. The result of analysis showed that both tissue rotation and contraction had large effects on displacement
    • 

    corecore