257 research outputs found

    Segmentation and visualization of volume maps

    Get PDF
    Volume data is a simple and often-used representation for exchanging and processing data in various scientific domains, such as medicine and molecular biology. The segmentation of volume data is an essential part of data interpretation. Researchers have extensively studied the problem of segmentation focusing on efficient algorithms for segmenting and rendering volumes. Our contribution is two-fold. First, we propose a tri-linear classification method that can implemented on the GPU to reduce artifacts and jaggedness along the material boundaries that appear when rendering segmented volumes. Our representation provides sub-voxel accuracy for representing segmented materials. Second, we demonstrate our interactive painting-based segmentation tool, which can be used to rapidly produce an intuitive segmentation. We compare our tool against known results and show that we can generate similar segmentations using a simple and intuitive control scheme

    Functional representation and manipulation of shapes with applications in surface and solid modeling

    Get PDF
    Real-valued functions have wide applications in various areas within computer graphics. In this work, we examine three representation of shapes using functions. In particular, we study the classical B-spline representation of piece-wise polynomials in the univariate domain. We provide a generalization of B-spline to the bivariate domain using intuition gained from the univariate construction. We also study the popular scheme of representing 3D density distribution using a uniform, rectilinear grid, where we provide a novel contouring scheme that culls occluded inner geometries. Lastly, we examine a ray-based representation for 3D indicator functions called ray-rep, for which we present a novel meshing scheme with multi-material extensions

    Solid modelling for manufacturing: from Voelcker's boundary evaluation to discrete paradigms

    Get PDF
    Herb Voelcker and his research team laid the foundations of Solid Modelling, on which Computer-Aided Design is based. He founded the ambitious Production Automation Project, that included Constructive Solid Geometry (CSG) as the basic 3D geometric representation. CSG trees were compact and robust, saving a memory space that was scarce in those times. But the main computational problem was Boundary Evaluation: the process of converting CSG trees to Boundary Representations (BReps) with explicit faces, edges and vertices for manufacturing and visualization purposes. This paper presents some glimpses of the history and evolution of some ideas that started with Herb Voelcker. We briefly describe the path from “localization and boundary evaluation” to “localization and printing”, with many intermediate steps driven by hardware, software and new mathematical tools: voxel and volume representations, triangle meshes, and many others, observing also that in some applications, voxel models no longer require Boundary Evaluation. In this last case, we consider the current research challenges and discuss several avenues for further research.Project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/501100011033/FEDER‘‘A way to make Europe’’Peer ReviewedPostprint (published version

    Improving Filtering for Computer Graphics

    Get PDF
    When drawing images onto a computer screen, the information in the scene is typically more detailed than can be displayed. Most objects, however, will not be close to the camera, so details have to be filtered out, or anti-aliased, when the objects are drawn on the screen. I describe new methods for filtering images and shapes with high fidelity while using computational resources as efficiently as possible. Vector graphics are everywhere, from drawing 3D polygons to 2D text and maps for navigation software. Because of its numerous applications, having a fast, high-quality rasterizer is important. I developed a method for analytically rasterizing shapes using wavelets. This approach allows me to produce accurate 2D rasterizations of images and 3D voxelizations of objects, which is the first step in 3D printing. I later improved my method to handle more filters. The resulting algorithm creates higher-quality images than commercial software such as Adobe Acrobat and is several times faster than the most highly optimized commercial products. The quality of texture filtering also has a dramatic impact on the quality of a rendered image. Textures are images that are applied to 3D surfaces, which typically cannot be mapped to the 2D space of an image without introducing distortions. For situations in which it is impossible to change the rendering pipeline, I developed a method for precomputing image filters over 3D surfaces. If I can also change the pipeline, I show that it is possible to improve the quality of texture sampling significantly in real-time rendering while using the same memory bandwidth as used in traditional methods

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations

    Get PDF
    Computer-based modeling and simulation practices have become an integral part of the medical education field. For surgical simulation applications, realistic constitutive modeling of soft tissue is considered to be one of the most challenging aspects of the problem, because biomechanical soft-tissue models need to reflect the correct elastic response, have to be efficient in order to run at interactive simulation rates, and be able to support operations such as cuts and sutures. Mesh-based solutions, where the connections between the individual degrees of freedom (DoF) are defined explicitly, have been the traditional choice to approach these problems. However, when the problem under investigation contains a discontinuity that disrupts the connectivity between the DoFs, the underlying mesh structure has to be reconfigured in order to handle the newly introduced discontinuity correctly. This reconfiguration for mesh-based techniques is typically called dynamic remeshing, and most of the time it causes the performance bottleneck in the simulation. In this dissertation, the efficiency of point-based meshless methods is investigated for both constitutive modeling of elastic soft tissues and visualization of simulation objects, where arbitrary discontinuities/cuts are applied to the objects in the context of surgical simulation. The point-based deformable object modeling problem is examined in three functional aspects: modeling continuous elastic deformations with, handling discontinuities in, and visualizing a point-based object. Algorithmic and implementation details of the presented techniques are discussed in the dissertation. The presented point-based techniques are implemented as separate components and integrated into the open-source software framework SOFA. The presented meshless continuum mechanics model of elastic tissue were verified by comparing it to the Hertzian non-adhesive frictionless contact theory. Virtual experiments were setup with a point-based deformable block and a rigid indenter, and force-displacement curves obtained from the virtual experiments were compared to the theoretical solutions. The meshless mechanics model of soft tissue and the integrated novel discontinuity treatment technique discussed in this dissertation allows handling cuts of arbitrary shape. The implemented enrichment technique not only modifies the internal mechanics of the soft tissue model, but also updates the point-based visual representation in an efficient way preventing the use of costly dynamic remeshing operations

    The use of finite element analysis in petroleum reservoir simulation

    Get PDF
    Imperial Users onl

    Simplifying The Non-Manifold Topology Of Multi-Partitioning Surface Networks

    Get PDF
    In bio-medical imaging, multi-partitioning surface networks: MPSNs) are very useful to model complex organs with multiple anatomical regions, such as a mouse brain. However, MPSNs are usually constructed from image data and might contain complex geometric and topological features. There has been much research on reducing the geometric complexity of a general surface: non-manifold or not) and the topological complexity of a closed, manifold surface. But there has been no attempt so far to reduce redundant topological features which are unique to non-manifold surfaces, such as curves and points where multiple sheets of surfaces join. In this thesis, we design interactive and automated means for removing redundant non-manifold topological features in MPSNs, which is a special class of non-manifold surfaces. The core of our approach is a mesh surgery operator that can effectively simplify the non-manifold topology while preserving the validity of the MPSN. The operator is implemented in an interactive user interface, allowing user-guided simplification of the input. We further develop an automatic algorithm that invokes the operator following a greedy heuristic. The algorithm is based on a novel, abstract representation of a non-manifold surface as a graph, which allows efficient discovery and scoring of possible surgery operations without the need for explicitly performing the surgeries on the mesh geometry
    corecore