400 research outputs found

    Local inversion of a class of piecewise regular maps

    Get PDF
    International audienceThis paper provides sufficient conditions for any map L, that is strongly piecewise linear relatively to a decomposition of R k in admissible cones, to be invertible. Namely, via a degree theory argument, we show that when there are at most four convex pieces (or three pieces with at most a non convex one), the map is invertible. Examples show that the result cannot be plainly extended to a greater number of pieces. Our result is obtained by studying the structure of strongly piecewise linear maps. We then extend the results to the P C 1 case

    First order k-th moment finite element analysis of nonlinear operator equations with stochastic data

    Get PDF
    We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains

    Strong stability in nonlinear programming revisited

    Get PDF
    The paper revisits characterizations of strong stability and strong regularity of KarushKuhn-Tucker solutions of nonlinear programs with twice differentiable data. We give a unified framework to handle both concepts simultaneousl

    Impulsive perturbations to differential equations: stable/unstable pseudo-manifolds, heteroclinic connections, and flux

    Get PDF
    State-dependent time-impulsive perturbations to a two-dimensional autonomous flow with stable and unstable manifolds are analysed by posing in terms of an integral equation which is valid in both forwards- and backwards-time. The impulses destroy the smooth invariant manifolds, necessitating new definitions for stable and unstable pseudo-manifolds. Their time-evolution is characterised by solving a Volterra integral equation of the second kind with discontinuous inhomogeniety. A criteria for heteroclinic trajectory persistence in this impulsive context is developed, as is a quantification of an instantaneous flux across broken heteroclinic manifolds. Several examples, including a kicked Duffing oscillator and an underwater explosion in the vicinity of an eddy, are used to illustrate the theory

    Manifold-based isogeometric analysis basis functions with prescribed sharp features

    Get PDF
    We introduce manifold-based basis functions for isogeometric analysis of surfaces with arbitrary smoothness, prescribed C0C^0 continuous creases and boundaries. The utility of the manifold-based surface construction techniques in isogeometric analysis was demonstrated in Majeed and Cirak (CMAME, 2017). The respective basis functions are derived by combining differential-geometric manifold techniques with conformal parametrisations and the partition of unity method. The connectivity of a given unstructured quadrilateral control mesh in R3\mathbb R^3 is used to define a set of overlapping charts. Each vertex with its attached elements is assigned a corresponding conformally parametrised planar chart domain in R2\mathbb R^2, so that a quadrilateral element is present on four different charts. On the collection of unconnected chart domains, the partition of unity method is used for approximation. The transition functions required for navigating between the chart domains are composed out of conformal maps. The necessary smooth partition of unity, or blending, functions for the charts are assembled from tensor-product B-spline pieces and require in contrast to earlier constructions no normalisation. Creases are introduced across user tagged edges of the control mesh. Planar chart domains that include creased edges or are adjacent to the domain boundary require special local polynomial approximants. Three different types of chart domain geometries are necessary to consider boundaries and arbitrary number and arrangement of creases. The new chart domain geometries are chosen so that it becomes trivial to establish local polynomial approximants that are always C0C^0 continuous across tagged edges. The derived non-rational manifold-based basis functions are particularly well suited for isogeometric analysis of Kirchhoff-Love thin shells with kinks
    • ā€¦
    corecore