4,548 research outputs found

    The separation problem for regular languages by piecewise testable languages

    Full text link
    Separation is a classical problem in mathematics and computer science. It asks whether, given two sets belonging to some class, it is possible to separate them by another set of a smaller class. We present and discuss the separation problem for regular languages. We then give a direct polynomial time algorithm to check whether two given regular languages are separable by a piecewise testable language, that is, whether a BΣ1(<)B{\Sigma}1(<) sentence can witness that the languages are indeed disjoint. The proof is a reformulation and a refinement of an algebraic argument already given by Almeida and the second author

    Representation and Characterization of Non-Stationary Processes by Dilation Operators and Induced Shape Space Manifolds

    Full text link
    We have introduce a new vision of stochastic processes through the geometry induced by the dilation. The dilation matrices of a given processes are obtained by a composition of rotations matrices, contain the measure information in a condensed way. Particularly interesting is the fact that the obtention of dilation matrices is regardless of the stationarity of the underlying process. When the process is stationary, it coincides with the Naimark Dilation and only one rotation matrix is computed, when the process is non-stationary, a set of rotation matrices are computed. In particular, the periodicity of the correlation function that may appear in some classes of signal is transmitted to the set of dilation matrices. These rotation matrices, which can be arbitrarily close to each other depending on the sampling or the rescaling of the signal are seen as a distinctive feature of the signal. In order to study this sequence of matrices, and guided by the possibility to rescale the signal, the correct geometrical framework to use with the dilation's theoretic results is the space of curves on manifolds, that is the set of all curve that lies on a base manifold. To give a complete sight about the space of curve, a metric and the derived geodesic equation are provided. The general results are adapted to the more specific case where the base manifold is the Lie group of rotation matrices. The notion of the shape of a curve can be formalized as the set of equivalence classes of curves given by the quotient space of the space of curves and the increasing diffeomorphisms. The metric in the space of curve naturally extent to the space of shapes and enable comparison between shapes.Comment: 19 pages, draft pape

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    The nuclear dimension of C*-algebras

    Get PDF
    We introduce the nuclear dimension of a C*-algebra; this is a noncommutative version of topological covering dimension based on a modification of the earlier concept of decomposition rank. Our notion behaves well with respect to inductive limits, tensor products, hereditary subalgebras (hence ideals), quotients, and even extensions. It can be computed for many examples; in particular, it is finite for all UCT Kirchberg algebras. In fact, all classes of nuclear C*-algebras which have so far been successfully classified consist of examples with finite nuclear dimension, and it turns out that finite nuclear dimension implies many properties relevant for the classification program. Surprisingly, the concept is also linked to coarse geometry, since for a discrete metric space of bounded geometry the nuclear dimension of the associated uniform Roe algebra is dominated by the asymptotic dimension of the underlying space.Comment: 33 page
    • …
    corecore