1,211 research outputs found

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Distributed Robust Set-Invariance for Interconnected Linear Systems

    Full text link
    We introduce a class of distributed control policies for networks of discrete-time linear systems with polytopic additive disturbances. The objective is to restrict the network-level state and controls to user-specified polyhedral sets for all times. This problem arises in many safety-critical applications. We consider two problems. First, given a communication graph characterizing the structure of the information flow in the network, we find the optimal distributed control policy by solving a single linear program. Second, we find the sparsest communication graph required for the existence of a distributed invariance-inducing control policy. Illustrative examples, including one on platooning, are presented.Comment: 8 Pages. Submitted to American Control Conference (ACC), 201

    Exploiting structure in piecewise affine identification of LFT systems

    Get PDF
    Identification of interconnected systems is a challenging problem in which it is crucial to exploit the available knowledge about the interconnection structure. In this paper, identification of discrete-time nonlinear systems composed by interconnected linear and nonlinear systems, is addressed. An iterative identification procedure is proposed, which alternates the estimation of the linear and the nonlinear components. Standard identification techniques are applied to the linear subsystem, whereas recently developed piecewise affine (PWA) identification techniques are employed for modelling the nonlinearity. A numerical example analyzes the benefits of the proposed structure-exploiting identification algorithm compared to applying black-box PWA identification techniques to the overall system

    Sampled-data Networked Control Systems: A Lyapunov-Krasovskii Approach

    Get PDF
    The main goal of this thesis is to develop computationally efficient methods for stability analysis and controller synthesis of sampled-data networked control systems. In sampled-data networked control systems, the sensory information and feedback signals are exchanged among different components of the system (sensors, actuators, and controllers) through a communication network. Stabilization of sampled-data networked control systems is a challenging problem since the introduction of multirate sample and holds, time-delays, and packet losses into the system degrades its performance and can lead to instability. A diverse range of systems with linear, piecewise affine (PWA), and nonlinear vector fields are studied in this thesis. PWA systems are a class of state-based switched systems with affine vector field in each mode. Stabilization of PWA networked control systems are even more challenging since they simultaneously involve switches due to the hybrid vector fields (state-based switching) and switches due to the sample and hold devices in the network (event-based switching). The objectives of this thesis are: (a) to design controllers that guarantee exponential stability of the system for a desired sampling period; (b) to design observers that guarantee exponential convergence of the estimation error to the origin for a desired sampling period; and (c) given a controller, to find the maximum allowable network-induced delay that guarantees exponential stability of the sampled-data networked control system. Lyapunov-Krasovskii based approaches are used to propose sufficient stability and stabilization conditions for sampled-data networked control systems. Convex relaxation techniques are employed to cast the proposed stability analysis and controller synthesis criteria in terms of linear matrix inequalities that can be solved efficiently
    corecore