14 research outputs found

    A scientometric analysis and critical review of gas turbine aero-engines control: From Whittle engine to more-electric propulsion

    Get PDF
    The gas turbine aero-engine control systems over the past eight decades have been thoroughly investigated. This review purposes are to present a comprehensive reference for aero-engine control design and development based on a systematic scientometric analysis and to categorize different methods, algorithms, and approaches taken into account to improve the performance and operability of aircraft engines from the first days to present to enable this challenging technology to be adopted by aero-engine manufacturers. Initially, the benefits of the control systems are restated in terms of improved engine efficiency, reduced carbon dioxide emissions, and improved fuel economy. This is followed by a historical coverage of the proposed concepts dating back to 1936. A comprehensive scientometric analysis is then presented to introduce the main milestones in aero-engines control. Possible control strategies and concepts are classified into four distinct phases, including Single input- single output control algorithms, MIN-MAX or Cascade control algorithms, advanced control algorithms, More-electric and electronic control algorithms and critically reviewed. The advantages and disadvantages of milestones are discussed to cover all practical aspects of the review to enable the researchers to identify the current challenges in aircraft engine control systems

    Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    Get PDF
    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Real-time fault identification for developmental turbine engine testing

    Get PDF
    Hundreds of individual sensors produce an enormous amount of data during developmental turbine engine testing. The challenge is to ensure the validity of the data and to identify data and engine anomalies in a timely manner. An automated data validation, engine condition monitoring, and fault identification process that emulates typical engineering techniques has been developed for developmental engine testing.An automated data validation and fault identification approach employing enginecycle-matching principles is described. Engine cycle-matching is automated by using an adaptive nonlinear component-level computer model capable of simulating both steady state and transient engine operation. Automated steady-state, transient, and real-time model calibration processes are also described. The model enables automation of traditional data validation, engine condition monitoring, and fault identification procedures. A distributed parallel computing approach enables the entire process to operate in real-time.The result is a capability to detect data and engine anomalies in real-time during developmental engine testing. The approach is shown to be successful in detecting and identifying sensor anomalies as they occur and distinguishing these anomalies from variations in component and overall engine aerothermodynamic performance. The component-level model-based engine performance and fault identification technique of the present research is capable of: identifying measurement errors on the order of 0.5 percent (e.g., sensor bias, drift,level shift, noise, or poor response) in facility fuel flow, airflow, and thrust measurements; identifying measurement errors in engine aerothermodynamic measurements (rotorspeeds, gas path pressures and temperatures); identifying measurement errors in engine control sensors (e.g., leaking/biased pressure sensor, slowly responding pressure measurement) and variable geometry rigging (e.g., misset guide vanes or nozzle area) that would invalidate a test or series of tests; identifying abrupt faults (e.g., faults due to domestic object damage, foreign object damage, and control anomalies); identifying slow faults (e.g., component or overall engine degradation, and sensor drift). Specifically, the technique is capable of identifying small changes in compressor (or fan) performance on the order of 0.5 percent; and being easily extended to diagnose secondary failure modes and to verify any modeling assumptions that may arise for developmental engine tests (e.g., increase in turbine flow capacity, inaccurate measurement of facility bleed flows, horsepower extraction, etc.).The component-level model-based engine performance and fault identification method developed in the present work brings together features which individually and collectively advance the state-of-the-art. These features are separated into three categories: advancements to effectively quantify off-nominal behavior, advancements to provide a fault detection capability that is practical from the viewpoint of the analysis,implementation, tuning, and design, and advancements to provide a real-time fault detection capability that is reliable and efficient

    Aeronautical engineering: A continuing bibliography with indexes (supplement 286)

    Get PDF
    This bibliography lists 845 reports, articles, and other documents introduced into the NASA scientific and technical information system in Dec. 1992. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Piecewise Adaptive Sliding Mode Control for Aeroengine Networked Control Systems with Resource Constraints

    No full text
    Within the future application of wireless network for the aeroengine control problem, resource constraints (caused by the limitation of hardware) and network traffic restriction must be considered as one of the difficulties to be solved; thus, the network connection and transmission efficiency can be ensured. With focus on the problem of active packed dropout, a MEF-TOD (Maximum Error First-Try Once Discard) scheduling based network parameter and sliding mode joint design method has been proposed. First, a scheduling protocol strained control system and network parameter joint model have been established based on MEF-TOD scheduling strategy, taking sampling period and data packet capacity as unknown network parameters. Subsequently, considering the influence of scheduling strategy, a sliding surface containing a compensation term has been designed, and then a sliding mode parameter and unknown network parameter heuristic joint design method has been developed. Finally, an attenuation factor based piecewise adaptive sliding mode strategy has been designed considering the influence of sampling period on system performance. Simulation results indicate that the joint design method can obtain the network parameter group which has the minimum performance function upper bound, thus achieving relatively high network utilization. The proposed piecewise adaptive sliding mode controller has good dynamic performance and is robust to the packet dropout problem caused by network scheduling and can effectively suppress chattering

    Aeronautical engineering: A continuing bibliography with indexes (supplement 233)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1988. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    Get PDF
    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore