2,545 research outputs found

    Perceptual Pluralism

    Get PDF
    Perceptual systems respond to proximal stimuli by forming mental representations of distal stimuli. A central goal for the philosophy of perception is to characterize the representations delivered by perceptual systems. It may be that all perceptual representations are in some way proprietarily perceptual and differ from the representational format of thought (Dretske 1981; Carey 2009; Burge 2010; Block ms.). Or it may instead be that perception and cognition always trade in the same code (Prinz 2002; Pylyshyn 2003). This paper rejects both approaches in favor of perceptual pluralism, the thesis that perception delivers a multiplicity of representational formats, some proprietary and some shared with cognition. The argument for perceptual pluralism marshals a wide array of empirical evidence in favor of iconic (i.e., image-like, analog) representations in perception as well as discursive (i.e., language-like, digital) perceptual object representations

    Directional adposition use in English, Swedish and Finnish

    Get PDF
    Directional adpositions such as to the left of describe where a Figure is in relation to a Ground. English and Swedish directional adpositions refer to the location of a Figure in relation to a Ground, whether both are static or in motion. In contrast, the Finnish directional adpositions edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) solely describe the location of a moving Figure in relation to a moving Ground (Nikanne, 2003). When using directional adpositions, a frame of reference must be assumed for interpreting the meaning of directional adpositions. For example, the meaning of to the left of in English can be based on a relative (speaker or listener based) reference frame or an intrinsic (object based) reference frame (Levinson, 1996). When a Figure and a Ground are both in motion, it is possible for a Figure to be described as being behind or in front of the Ground, even if neither have intrinsic features. As shown by Walker (in preparation), there are good reasons to assume that in the latter case a motion based reference frame is involved. This means that if Finnish speakers would use edellĂ€ (in front of) and jĂ€ljessĂ€ (behind) more frequently in situations where both the Figure and Ground are in motion, a difference in reference frame use between Finnish on one hand and English and Swedish on the other could be expected. We asked native English, Swedish and Finnish speakers’ to select adpositions from a language specific list to describe the location of a Figure relative to a Ground when both were shown to be moving on a computer screen. We were interested in any differences between Finnish, English and Swedish speakers. All languages showed a predominant use of directional spatial adpositions referring to the lexical concepts TO THE LEFT OF, TO THE RIGHT OF, ABOVE and BELOW. There were no differences between the languages in directional adpositions use or reference frame use, including reference frame use based on motion. We conclude that despite differences in the grammars of the languages involved, and potential differences in reference frame system use, the three languages investigated encode Figure location in relation to Ground location in a similar way when both are in motion. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslingiuistic evidence. In P. Bloom, M.A. Peterson, L. Nadel & M.F. Garrett (Eds.) Language and Space (pp.109-170). Massachusetts: MIT Press. Nikanne, U. (2003). How Finnish postpositions see the axis system. In E. van der Zee & J. Slack (Eds.), Representing direction in language and space. Oxford, UK: Oxford University Press. Walker, C. (in preparation). Motion encoding in language, the use of spatial locatives in a motion context. Unpublished doctoral dissertation, University of Lincoln, Lincoln. United Kingdo

    Constructing a concept of number

    Get PDF
    Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics like linearity that may persist in the form of knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to and functionally independent of any particular form. Material devices used to represent and manipulate numbers also interact with language in ways that reinforce or contrast different aspects of numerical cognition. Not only does this interaction potentially explain some of the unique aspects of numerical language, it suggests that the two are complementary but ultimately distinct means of accessing numerical intuitions and insights. The potential inclusion of materiality in contemporary research in numerical cognition is advocated, both for its explanatory power, as well as its influence on psychological, behavioral, and linguistic aspects of numerical cognition

    Acta Cybernetica : Volume 15. Number 1.

    Get PDF

    On Parallel Array P Systems

    Get PDF
    We further investigate the parallel array P systems recently introduced by K.G. Subramanian, P. Isawasan, I. Venkat, and L. Pan. We rst make explicit several classes of parallel array P systems (with one or more axioms, with total or maximal parallelism, with rules of various types). In this context, some results from the above mentioned paper by Subramanian et al. are improved. A series of open problems are formulated

    Reaching out to the other side: Formal-linguistics-based SLA and Socio-SLA

    Get PDF
    Generative linguistics has long been concerned with the linguistic competence of the “ideal speaker-listener, in a completely homogeneous speech-community, who knows its language perfectly” (Chomsky 1965: 3). Research in formal-linguistics-based second language acquisition takes as its starting point the second language (L2) speaker's underlying mental representation. Here the factors of interest are influence of the learner's native language and, in generative SLA, the operation of innate linguistic mechanisms (Universal Grammar). Similar to methodology in formal syntax, lxSLA adopts techniques such as grammaticality judgment, comprehension and perception tasks supplementing spontaneously produced oral data. While there may be individual differences in oral production, tasks that tap learners' mental representations reveal commonalities across learners from a given native language background with the same amount/ type of exposure and age of initial L2 exposure. When it comes to phonology, age has long been a central factor with numerous comparative studies showing younger learners far outperforming older learners (see Piske et al. 2001). This paper discusses a case of possible non-acquisition by L2 children who had had considerable exposure to the L2. Children's non-acquisition is only apparent, and this allows us to consider the value of lxSLA methodology on the one hand, and and raises issues about what might be lacking in the current socio-SLA paradigm, on the other. We argue that only when we return to the cooperation that marked its birth in the 1960s will we have a comprehensive picture of SLA
    • 

    corecore