99 research outputs found

    Interactive real-time musical systems

    Get PDF
    PhDThis thesis focuses on the development of automatic accompaniment systems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a `black box' approach is tested on a wide variety of music genres. We highlight some of the diffculties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and machine. Although statistical data may reveal quantifiable measurements of the system's predictions and behaviour, we also want to test how well it functions within the context of a live performance. To do so, we devise an evaluation strategy to contrast a machine-controlled accompaniment with one controlled by a human. We also present recent work on a real-time multiple pitch tracking, which is then extended to provide automatic accompaniment for harmonic instruments such as guitar. By aligning salient notes in the output from a dual pitch tracking process, we make changes to the tempo of the accompaniment in order to align it with a live stream. By demonstrating the system's ability to align offline tracks, we can show that under restricted initial conditions, the algorithm works well as an alignment tool

    Proceedings of the 1st International Conference on Live Coding

    Get PDF
    Open Access peer reviewed papers on live coding published at the 1st International Conference on Live Coding (ICLC) in Leeds

    Investigating the cognitive foundations of collaborative musical free improvisation: Experimental case studies using a novel application of the subsumption architecture

    Get PDF
    This thesis investigates the cognitive foundations of collaborative musical free improvisation. To explore the cognitive underpinnings of the collaborative process, a series of experimental case studies was undertaken in which expert improvisors performed with an artificial agent. The research connects ecological musicology and subsumption robotics, and builds upon insights from empirical psychology pertaining to the attribution of intentionality. A distinguishing characteristic of free improvisation is that no over-arching framework of formal musical conventions defines it, and it cannot be positively identified by sound alone, which poses difficulties for traditional musicology. Current musicological research has begun to focus on the social dimension of music, including improvisation. Ecological psychology, which focuses on the relation of cognition to agent–environment dynamics using the notion of affordances, has been shown to be a promising approach to understanding musical improvisation. This ecological approach to musicology makes it possible to address the subjective and social aspects of improvised music, as opposed to the common treatment of music as objective and neutral. The subjective dimension of musical listening has been highlighted in music cognition studies of cue abstraction, whereby listeners perceive emergent structures while listening to certain forms of music when no structures are identified in advance. These considerations informed the design of the artificial agent, Odessa, used for this study. In contrast to traditional artificial intelligence (AI), which tends to view the world as objective and neutral, behaviour-based robotics historically developed around ideas similar to those of ecological psychology, focused on agent–environment dynamics and the ability to deal with potentially rapidly changing environments. Behaviour-based systems that are designed using the subsumption architecture are robust and flexible in virtue of their modular, decentralised design comprised of simple interactions between simple mechanisms. The competence of such agents is demonstrated on the basis of their interaction with the environment and ability to cope with unknown and dynamic conditions, which suggests the concept of improvisation. This thesis documents a parsimonious subsumption design for an agent that performs musical free improvisation with human co-performers, as well as the experimental studies conducted with this agent. The empirical component examines the human experience of collaborating with the agent and, more generally, the cognitive psychology of collaborative improvisation. The design was ultimately successful, and yielded insights about cognition in collaborative improvisation, in particular, concerning the central relationship between perceived intentionality and affordances. As a novel application of the subsumption architecture, this research contributes to AI/robotics and to research on interactive improvisation systems. It also contributes to music psychology and cognition, as well as improvisation studies, through its empirical grounding of an ecological model of musical interaction

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    • 

    corecore