11,627 research outputs found

    Infrared face recognition: a comprehensive review of methodologies and databases

    Full text link
    Automatic face recognition is an area with immense practical potential which includes a wide range of commercial and law enforcement applications. Hence it is unsurprising that it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in face recognition continues to improve, benefitting from advances in a range of different research fields such as image processing, pattern recognition, computer graphics, and physiology. Systems based on visible spectrum images, the most researched face recognition modality, have reached a significant level of maturity with some practical success. However, they continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease recognition accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject. Our key contributions are: (i) a summary of the inherent properties of infrared imaging which makes this modality promising in the context of face recognition, (ii) a systematic review of the most influential approaches, with a focus on emerging common trends as well as key differences between alternative methodologies, (iii) a description of the main databases of infrared facial images available to the researcher, and lastly (iv) a discussion of the most promising avenues for future research.Comment: Pattern Recognition, 2014. arXiv admin note: substantial text overlap with arXiv:1306.160

    Polar Fusion Technique Analysis for Evaluating the Performances of Image Fusion of Thermal and Visual Images for Human Face Recognition

    Full text link
    This paper presents a comparative study of two different methods, which are based on fusion and polar transformation of visual and thermal images. Here, investigation is done to handle the challenges of face recognition, which include pose variations, changes in facial expression, partial occlusions, variations in illumination, rotation through different angles, change in scale etc. To overcome these obstacles we have implemented and thoroughly examined two different fusion techniques through rigorous experimentation. In the first method log-polar transformation is applied to the fused images obtained after fusion of visual and thermal images whereas in second method fusion is applied on log-polar transformed individual visual and thermal images. After this step, which is thus obtained in one form or another, Principal Component Analysis (PCA) is applied to reduce dimension of the fused images. Log-polar transformed images are capable of handling complicacies introduced by scaling and rotation. The main objective of employing fusion is to produce a fused image that provides more detailed and reliable information, which is capable to overcome the drawbacks present in the individual visual and thermal face images. Finally, those reduced fused images are classified using a multilayer perceptron neural network. The database used for the experiments conducted here is Object Tracking and Classification Beyond Visible Spectrum (OTCBVS) database benchmark thermal and visual face images. The second method has shown better performance, which is 95.71% (maximum) and on an average 93.81% as correct recognition rate.Comment: Proceedings of IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (IEEE CIBIM 2011), Paris, France, April 11 - 15, 201

    Minutiae Based Thermal Human Face Recognition using Label Connected Component Algorithm

    Full text link
    In this paper, a thermal infra red face recognition system for human identification and verification using blood perfusion data and back propagation feed forward neural network is proposed. The system consists of three steps. At the very first step face region is cropped from the colour 24-bit input images. Secondly face features are extracted from the croped region, which will be taken as the input of the back propagation feed forward neural network in the third step and classification and recognition is carried out. The proposed approaches are tested on a number of human thermal infra red face images created at our own laboratory. Experimental results reveal the higher degree performanceComment: 7 pages, Conference. arXiv admin note: substantial text overlap with arXiv:1309.1000, arXiv:1309.0999, arXiv:1309.100

    Prediction model of alcohol intoxication from facial temperature dynamics based on K-means clustering driven by evolutionary computing

    Get PDF
    Alcohol intoxication is a significant phenomenon, affecting many social areas, including work procedures or car driving. Alcohol causes certain side effects including changing the facial thermal distribution, which may enable the contactless identification and classification of alcohol-intoxicated people. We adopted a multiregional segmentation procedure to identify and classify symmetrical facial features, which reliably reflects the facial-temperature variations while subjects are drinking alcohol. Such a model can objectively track alcohol intoxication in the form of a facial temperature map. In our paper, we propose the segmentation model based on the clustering algorithm, which is driven by the modified version of the Artificial Bee Colony (ABC) evolutionary optimization with the goal of facial temperature features extraction from the IR (infrared radiation) images. This model allows for a definition of symmetric clusters, identifying facial temperature structures corresponding with intoxication. The ABC algorithm serves as an optimization process for an optimal cluster's distribution to the clustering method the best approximate individual areas linked with gradual alcohol intoxication. In our analysis, we analyzed a set of twenty volunteers, who had IR images taken to reflect the process of alcohol intoxication. The proposed method was represented by multiregional segmentation, allowing for classification of the individual spatial temperature areas into segmentation classes. The proposed method, besides single IR image modelling, allows for dynamical tracking of the alcohol-temperature features within a process of intoxication, from the sober state up to the maximum observed intoxication level.Web of Science118art. no. 99

    Robust thermal face recognition using region classifiers

    Get PDF
    This paper presents a robust approach for recognition of thermal face images based on decision level fusion of 34 different region classifiers. The region classifiers concentrate on local variations. They use singular value decomposition (SVD) for feature extraction. Fusion of decisions of the region classifier is done by using majority voting technique. The algorithm is tolerant against false exclusion of thermal information produced by the presence of inconsistent distribution of temperature statistics which generally make the identification process difficult. The algorithm is extensively evaluated on UGC-JU thermal face database, and Terravic facial infrared database and the recognition performance are found to be 95.83% and 100%, respectively. A comparative study has also been made with the existing works in the literature

    Side-View Face Recognition

    Get PDF
    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databases appropriate for this task, and review current methods for profile face recognition

    Non-invasive assessment of affective states on individual with autism spectrum disorder: a review

    Get PDF
    Individuals with Autism Spectrum Disorder (ASD) are identified as a group of people who have social interaction and communication impairment. They have difficulty in producing speech and explaining what they meant. They also suffer from emotional or cognitive states requirement that stance challenges to their interest in communicating and socializing. Hence, it is vital to know their emotion to help them develop better skills in social interaction. Emotion can be derived from affective states and can be detected through physical reaction and physiological signals. There are numerous known modalities available to detect the affective states either through invasive and non-invasive methods. In order to evaluate the affective states of individuals with ASD, amongst the methods used are through electrodermal activity (EDA), electromyographic (EMG) activity, and cardiovascular activity (ECG) and blood flow analyses. Though considered non invasive, these methods require sensor to be patched on to the skin causing discomfort to the subjects and might distract their true emotion. We propose non-invasive methods which is also contactless to address the problem to detect emotion of individual with ASD that is through thermal imaging. Through the impact of cutaneous temperature in blood flow, thermal imprint is radiated and can be detected in this method. To date, no research has been reported of the use of thermal imaging analysis of facial skin temperature on the individuals with ASD. In this paper we will justify the method and also discuss the merits and demerits of other methods

    Biometrics beyond the visible spectrum: Imaging technologies and applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04391-8_20Proceedings of Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009, Madrid (Spain)Human body images acquired at visible spectrum have inherent restrictions that hinder the performance of person recognition systems built using that kind of information (e.g. scene artefacts under varying illumination conditions). One promising approach for dealing with those limitations is using images acquired beyond the visible spectrum. This paper reviews some of the existing human body imaging technologies working beyond the visible spectrum (X-ray, Infrared, Millimeter and Submillimeter Wave imaging technologies). The benefits and drawbacks of each technology and their biometric applications are presented.This work has been supported by Terasense (CSD2008-00068) Consolider project of the Spanish Ministry of Science and Technology
    • ā€¦
    corecore