2,285 research outputs found

    GedankenNet: Self-supervised learning of hologram reconstruction using physics consistency

    Full text link
    The past decade has witnessed transformative applications of deep learning in various computational imaging, sensing and microscopy tasks. Due to the supervised learning schemes employed, most of these methods depend on large-scale, diverse, and labeled training data. The acquisition and preparation of such training image datasets are often laborious and costly, also leading to biased estimation and limited generalization to new types of samples. Here, we report a self-supervised learning model, termed GedankenNet, that eliminates the need for labeled or experimental training data, and demonstrate its effectiveness and superior generalization on hologram reconstruction tasks. Without prior knowledge about the sample types to be imaged, the self-supervised learning model was trained using a physics-consistency loss and artificial random images that are synthetically generated without any experiments or resemblance to real-world samples. After its self-supervised training, GedankenNet successfully generalized to experimental holograms of various unseen biological samples, reconstructing the phase and amplitude images of different types of objects using experimentally acquired test holograms. Without access to experimental data or the knowledge of real samples of interest or their spatial features, GedankenNet's self-supervised learning achieved complex-valued image reconstructions that are consistent with the Maxwell's equations, meaning that its output inference and object solutions accurately represent the wave propagation in free-space. This self-supervised learning of image reconstruction tasks opens up new opportunities for various inverse problems in holography, microscopy and computational imaging fields.Comment: 30 pages, 6 Figure

    Roadmap on Label-Free Super-resolution Imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.Peer reviewe

    Learning Nanoscale Motion Patterns of Vesicles in Living Cells

    Get PDF
    Detecting and analyzing nanoscale motion patterns of vesicles, smaller than the microscope resolution (~250 nm), inside living biological cells is a challenging problem. State-of-the-art CV approaches based on detection, tracking, optical flow or deep learning perform poorly for this problem. We propose an integrative approach, built upon physics based simulations, nanoscopy algorithms, and shallow residual attention network to make it possible for the first time to analysis sub-resolution motion patterns in vesicles that may also be of sub-resolution diameter. Our results show state-of-the-art performance, 89% validation accuracy on simulated dataset and 82% testing accuracy on an experimental dataset of living heart muscle cells imaged under three different pathological conditions. We demonstrate automated analysis of the motion states and changed in them for over 9000 vesicles. Such analysis will enable large scale biological studies of vesicle transport and interaction in living cells in the future

    Roadmap on digital holography [Invited]

    Get PDF
    This Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography
    corecore