2,971 research outputs found

    RISnet: A Scalable Approach for Reconfigurable Intelligent Surface Optimization with Partial CSI

    Full text link
    The reconfigurable intelligent surface (RIS) is a promising technology that enables wireless communication systems to achieve improved performance by intelligently manipulating wireless channels. In this paper, we consider the sum-rate maximization problem in a downlink multi-user multi-input-single-output (MISO) channel via space-division multiple access (SDMA). Two major challenges of this problem are the high dimensionality due to the large number of RIS elements and the difficulty to obtain the full channel state information (CSI), which is assumed known in many algorithms proposed in the literature. Instead, we propose a hybrid machine learning approach using the weighted minimum mean squared error (WMMSE) precoder at the base station (BS) and a dedicated neural network (NN) architecture, RISnet, for RIS configuration. The RISnet has a good scalability to optimize 1296 RIS elements and requires partial CSI of only 16 RIS elements as input. We show it achieves a high performance with low requirement for channel estimation for geometric channel models obtained with ray-tracing simulation. The unsupervised learning lets the RISnet find an optimized RIS configuration by itself. Numerical results show that a trained model configures the RIS with low computational effort, considerably outperforms the baselines, and can work with discrete phase shifts

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Alternating Beamforming with Intelligent Reflecting Surface Element Allocation

    Full text link
    Intelligent reflecting surface (IRS) has become a promising technology to aid next generation wireless communication systems. In this paper, we develop an alternating beamforming technique with a novel concept of IRS element allocation for multiple-input multiple-output systems when a base station supports multiple single antenna users aided with a single IRS. Specifically, we allocate each IRS element separately to each user, thus, in the beamforming stage allowing the IRS element only consider a single user at a time. In result to this separation, the complexity is vastly decreased. The proposed beamforming technique tries to maximize the minimum rate of all users with minimal complexity. In the numerical results, we show that the proposed technique is comparable to the convex optimization-based benchmark with sufficiently less complexity.Comment: 5 pages, 3 figures, submitted to Wireless Communications Letters (WCL

    Generalised Impedance Model of Wireless Links Assisted by Reconfigurable Intelligent Surfaces

    Full text link
    We devise an end-to-end communication channel model that describes the performance of RIS-assisted MIMO wireless links. The model borrows the impedance (interaction) matrix formalism from the Method of Moments and provides a physics-based communication model. In configurations where the transmit and receive antenna arrays are distant from the RIS beyond a wavelength, a reduced model provides accurate results for arbitrary RIS unit cell geometry. Importantly, the simplified model configures as a cascaded channel transfer matrix whose mathematical structure is compliant with widely accepted, but less accurate, system level RIS models. A numerical validation of the communication model is presented for the design of binary RIS structures with scatterers of canonical geometry. Attained results are consistent with path-loss models: For obstructed line-of-sight between transmitter and receiver, the channel capacity of the (optimised) RIS-assisted link scales as R−2R^{-2}, with RR RIS-receiver distance at fixed transmitter position. Our results shows that the applicability of communication models based on mutual impedance matrices is not restricted to canonical minimum scattering RIS unit cells.Comment: Submitted to IEEE Transactions on Antennas and Propagation; 15 pages, 11 figure
    • …
    corecore