50 research outputs found

    System and Component Failure from Electrical Overstress and Electrostatic Discharge

    Get PDF
    Electrical overstress (EOS) and electrostatic discharge (ESD) have been an issue in devices, circuit and systems for electronics for many decades, as early as the 1970s, and continued to be an issue to today. In this chapter, the issue of EOS and ESD will be discussed. The sources of both EOS and ESD failure history will be discussed. EOS and ESD physical models, failure mechanisms, testing methods and solutions will be shown. The chapter will close with discussion on how to provide both EOS and ESD robust devices, circuits, and systems, design practices, and procedures, as well as EOS and ESD factory control programs. EOS sources also occur from design characteristics of devices, circuits, and systems

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Robustness and durability aspects in the design of power management circuits for IoT applications

    Get PDF
    With the increasing interest in the heterogeneous world of the “Internet of Things” (IoT), new compelling challenges arise in the field of electronic design, especially concerning the development of innovative power management solutions. Being this diffusion a consolidated reality nowadays, emerging needs like lifetime, durability and robustness are becoming the new watchwords for power management, being a common ground which can dramatically improve service life and confidence in these devices. The possibility to design nodes which do not need external power supply is a crucial point in this scenario. Moreover, the development of autonomous nodes which are substantially maintenance free, and which therefore can be placed in unreachable or harsh environments is another enabling aspect for the exploitation of this technology. In this respect, the study of energy harvesting techniques is increasingly earning interest again. Along with efficiency aspects, degradation aspects are the other main research field with respect to lifetime, durability and robustness of IoT devices, especially related to aging mechanisms which are peculiar in power management and power conversion circuits, like for example battery wear during usage or hot-carrier degradation (HCD) in power MOSFETs. In this thesis different aspects related to lifetime, durability and robustness in the field of power management circuits are studied, leading to interesting contributions. Innovative designs of DC/DC power converters are studied and developed, especially related to reliability aspects of the use of electrochemical cells as power sources. Moreover, an advanced IoT node is proposed, based on energy harvesting techniques, which features an intelligent dynamically adaptive power management circuit. As a further contribution, a novel algorithm is proposed, which is able to effectively estimate the efficiency of a DC/DC converter for photovoltaic applications at runtime. Finally, an innovative DC/DC power converter with embedded monitoring of hot-carrier degradation in power MOSFETs is designed

    A High-Temperature, High-Voltage SOI Gate Driver Integrated Circuit with High Drive Current for Silicon Carbide Power Switches

    Get PDF
    High-temperature integrated circuit (IC) design is one of the new frontiers in microelectronics that can significantly improve the performance of the electrical systems in extreme environment applications, including automotive, aerospace, well-logging, geothermal, and nuclear. Power modules (DC-DC converters, inverters, etc.) are key components in these electrical systems. Power-to-volume and power-to-weight ratios of these modules can be significantly improved by employing silicon carbide (SiC) based power switches which are capable of operating at much higher temperature than silicon (Si) and gallium arsenide (GaAs) based conventional devices. For successful realization of such high-temperature power electronic circuits, associated control electronics also need to perform at high temperature. In any power converter, gate driver circuit performs as the interface between a low-power microcontroller and the semiconductor power switches. This dissertation presents design, implementation, and measurement results of a silicon-on-insulator (SOI) based high-temperature (\u3e200 _C) and high-voltage (\u3e30 V) universal gate driver integrated circuit with high drive current (\u3e3 A) for SiC power switches. This mixed signal IC has primarily been designed for automotive applications where the under-hood temperature can reach 200 _C. Prototype driver circuits have been designed and implemented in a Bipolar-CMOS- DMOS (BCD) on SOI process and have been successfully tested up to 200 _C ambient temperature driving SiC switches (MOSFET and JFET) without any heat sink and thermal management. This circuit can generate 30V peak-to-peak gate drive signal and can source and sink 3A peak drive current. Temperature compensating and temperature independent design techniques are employed to design the critical functional units like dead-time controller and level shifters in the driver circuit. Chip-level layout techniques are employed to enhance the reliability of the circuit at high temperature. High-temperature test boards have been developed to test the prototype ICs. An ultra low power on-chip temperature sensor circuit has also been designed and integrated into the gate-driver die to safeguard the driver circuit against excessive die temperature (_ 220 _C). This new temperature monitoring approach utilizes a reverse biased p-n junction diode as the temperature sensing element. Power consumption of this sensor circuit is less than 10 uW at 200 _C

    Komponente na bazi silicijum karbida u elektronskim kolima velike snage

    Get PDF
    Silicon has been the number one choice of materials for over 40 years. It has reached an almost perfected stage through extensive research for so many years; now it is cheap to be manufactured and performs very reliably at room temperature. However, as modem electronics move to a more advanced level with increasing complexity, materials other than silicon are under consideration. Several areas where Silicon shows shortcomings in high temperature environments and high voltage conditions. The Silicon devices need to be shielded – cooled, are limited to operation at low temperature and low blocking voltage by virtue physical and electric properties. So silicon devices are restricted and have focused on low power electronics applications only, these various limitations in the use of Si devices has led to development of wide band gap semiconductors such as Silicon carbide . And because there is an urgent need for high voltage electronics for advanced technology represented in (transportation - space - communications - power systems) in which silicon has failed to be used. Due to various properties of Silicon carbide like lower intrinsic carrier concentration (10–35 orders of magnitude), higher electric breakdown field (4–20 times), higher thermal conductivity (3–13 times), larger saturated electron drift velocity (2–2.5 times),wide band gap (2.2 eV) and higher, more isotropic bulk electron mobility comparable to that of Si. These properties make it a potential material to overcome the limitations of Si. The fact that wide band gap semiconductors are capable of electronic functionality, particularly in the case of SiC. 4H-SiC is a potentially useful material for high temperature devices because of its refractory nature. So Silicon Carbide (SiC) will bring solid-state power electronics to a new horizon by expanding to applications in the high voltage power electronics sectors. It is the better choice for use in high temperature environment and high voltage conditions. Silicon carbide is about to replace Si material very quickly and scientifically will force Si to get retired. The superior characteristics of silicon carbide, have suggested considering as the next generation of power semiconductor devices. And because our study will concentrate on the use of semiconductors on high voltage unipolar power electronics devices. DIMOSFET will be..

    Design of miniaturized radio-frequency DC-DC power converters

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 321-325).Power electronics appear in nearly every piece of modern electronic hardware, forming an essential conduit from electrical source to load. Portable electronics, an area where a premium is placed on size, weight, and cost, are driving the development of power systems with greater density and better manufacturability. This motivates a push to higher switching frequencies enabling smaller passive components and better integration. To realize these goals this thesis explores devices, circuits, and passives capable of operating efficiently into the VHF regime (30-300 MHz) and their integration into power electronic systems of high power density. A good integrated power MOSFET presages high-density converters. Previous VHF systems were demonstrated with bulky and expensive RF Lateral, Double-Diffused MOSFETs (LDMOSFET). We show that through a combination of layout optimization and safe operating area (SOA) extension integrated devices can achieve near-parity performance to their purpose-built RF discrete cousins over the desired operating regime. A layout optimization method demonstrating a 2x reduction in device loss is presented alongside experimental demonstration of SOA extension. Together the methods yield a 3x reduction in loss that bolsters the utility of the typical (and relatively inexpensive) LDMOS IC power process for VHF converters. Passive component synthesis is addressed in the context of an isolated VHF converter topology. We present a VHF topology where most of the magnetic energy storage is accomplished in a transformer that forms an essential part of the resonant network. The reduced component count aids in manufacturability and size, but places difficult requirements on the transformer design. An algorithm for synthesizing small and efficient air-core transformers with a fully-constrained inductance matrix is presented. Planar PCB transformers are fabricated and match the the design specifications to within 15%. They are 94% efficient and have a power density greater than 2kW per cubic inch. To take full advantage of good devices and printed passives, we develop an IC for the isolated converter having optimized power devices, and integrated gate driver, controller, and hotel functions. The chip is assembled into a complete converter system using the transformers and circuits described above. Flip-chip mounting is used to overcome bondwire parasitics, and reduce packaging volume. The final system achieves 75% efficiency at 75 MHz at 6W.by Anthony D. Sagneri.Ph.D
    corecore