6,434 research outputs found

    The diffusion-induced nova scenario. CK Vul and PB 8 as possible observational counterparts

    Get PDF
    We propose a scenario for the formation of DA white dwarfs with very thin helium buffers. For these stars we explore the possible occurrence of diffusion-induced CNO- flashes, during their early cooling stage. In order to obtain very thin helium buffers, we simulate the formation of low mass remnants through an AGB final/late thermal pulse (AFTP/LTP scenario). Then we calculate the consequent white dwarf cooling evolution by means of a consistent treatment of element diffusion and nuclear burning. Based on physically sounding white dwarf models, we find that the range of helium buffer masses for these diffusion-induced novas to occur is significantly smaller than that predicted by the only previous study of this scenario. As a matter of fact, we find that these flashes do occur only in some low-mass (M < 0.6M) and low metallicity (Z_ZAMS <0.001) remnants about 10^6 - 10^7 yr after departing from the AGB. For these objects, we expect the luminosity to increase by about 4 orders of magnitude in less than a decade. We also show that diffusion-induced novas should display a very typical eruption lightcurve, with an increase of about a few magnitudes per year before reaching a maximum of M_V ~ -5 to -6. Our simulations show that surface abundances after the outburst are characterized by logNH/NHe ~ -0.15...0.6 and N>C>O by mass fractions. Contrary to previous speculations we show that these events are not recurrent and do not change substantially the final H-content of the cool (DA) white dwarf. (Abridged)Comment: 16 pages, 8 figures, 3 tables. Replaced to match the final version published by MNRAS. The definitive version is available at http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291365-296

    Evolution of a 3 \msun star from the main sequence to the ZZ Ceti stage: the role played by element diffusion

    Full text link
    The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. In particular, we follow the evolution of a 3 \msun model from the zero-age main sequence (the adopted metallicity is Z=0.02) all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. Emphasis is placed on the evolution of the chemical abundance distribution due to diffusion processes and the role played by hydrogen burning during the white dwarf evolution. Furthermore, the implications of our evolutionary models for the main quantities relevant for adiabatic pulsation analysis are discussed. Interestingly, the shape of the Ledoux term is markedly smoother as compared with previous detailed studies of white dwarfs. This is translated into a different behaviour of the Brunt-Vaisala frequency.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    Gas Dynamics of the Nickel-56 Decay Heating in Pair-Instability Supernovae

    Get PDF
    Very massive 140-260 Msun stars can die as highly-energetic pair-instability supernovae (PI SNe) with energies of up to 100 times those of core-collapse SNe that can completely destroy the star, leaving no compact remnant behind. These explosions can synthesize 0.1300.1-30 Msun of radioactive Ni56, which can cause them to rebrighten at later times when photons due to Ni56 decay diffuse out of the ejecta. However, heat from the decay of such large masses of Ni56 could also drive important dynamical effects deep in the ejecta that are capable of mixing elements and affecting the observational signatures of these events. We have now investigated the dynamical effect of Ni56 heating on PI SN ejecta with high-resolution two-dimensional hydrodynamic simulations performed with the CASTRO code. We find that expansion of the hot Ni56 bubble forms a shell at the base of the silicon layer of the ejecta about 200 days after the explosion but that no hydrodynamical instabilities develop that would mix Ni56 with the Si/O-rich ejecta. However, while the dynamical effects of Ni56 heating may be weak they could affect the observational signatures of some PI SNe by diverting decay energy into internal expansion of the ejecta at the expense of rebrightening at later times.Comment: Accepted to ApJ, 14 page

    Reprocessing the Hipparcos data for evolved giant stars II. Absolute magnitudes for the R-type carbon stars

    Get PDF
    The Hipparcos Intermediate Astrometric Data for carbon stars have been reprocessed using an algorithm which provides an objective criterion for rejecting anomalous data points and constrains the parallax to be positive. New parallax solutions have been derived for 317 cool carbon stars, mostly of types R and N. In this paper we discuss the results for the R stars. The most important result is that the early R stars (i.e., R0 - R3) have absolute magnitudes and V-K colors locating them among red clump giants in the Hertzsprung-Russell diagram. Stars with subtypes R4 - R9 tend to be cooler and have similar luminosity to the N-type carbon stars, as confirmed by their position in the (J-H, H-K) color-color diagram. The sample of early R-type stars selected from the Hipparcos Catalogue appears to be approximately complete to magnitude K_0 ~ 7, translating into a completeness distance of 600 pc if all R stars had M_K= -2 (400 pc if M_K= -1). With about 30 early R-type stars in that volume, they comprise about 0.04% (0.14% for M_K= -1) of the red clump stars in the solar neighborhood. Identification with the red clump locates these stars at the helium core burning stage of stellar evolution, while the N stars are on the asymptotic giant branch, where helium shell burning occurs. The present analysis suggests that for a small fraction of the helium core burning stars (far lower than the fraction of helium shell-burning stars), carbon produced in the interior is mixed to the atmosphere in sufficient quantities to form a carbon star.Comment: 11 pages, 6 figures, A&A Latex. To appear in A&

    Oscillatory secular modes: The thermal micropulses

    Get PDF
    Stars in the narrow mass range of about 2.5 and 3.5 solar masses can develop a thermally unstable He-burning shell during its ignition phase. We study, from the point of view secular stability theory, these so called thermal micropulses and we investigate their properties; the thermal pulses constitute a convenient conceptual laboratory to look thoroughly into the physical properties of a helium-burning shell during the whole thermally pulsing episode. Linear stability analyses were performed on a large number of 3 solar-mass star models at around the end of their core helium-burning and the beginning of the double-shell burning phase. The stellar models were not assumed to be in thermal equilibrium. The thermal mircopulses, and we conjecture all other thermal pulse episodes encountered by shell-burning stars, can be understood as the nonlinear finite-amplitude realization of an oscillatory secular instability that prevails during the whole thermal pulsing episode. Hence, the cyclic nature of the thermal pulses can be traced back to a linear instability concept.Comment: To be published - essentially footnote-free - in Astronomy & Astrophysic

    Towards Realistic Progenitors of Core-Collapse Supernovae

    Full text link
    Two-dimensional (2D) hydrodynamical simulations of progenitor evolution of a 23 solar mass star, close to core collapse (about 1 hour, in 1D), with simultaneously active C, Ne, O, and Si burning shells, are presented and contrasted to existing 1D models (which are forced to be quasi-static). Pronounced asymmetries, and strong dynamical interactions between shells are seen in 2D. Although instigated by turbulence, the dynamic behavior proceeds to sufficiently large amplitudes that it couples to the nuclear burning. Dramatic growth of low order modes is seen, as well as large deviations from spherical symmetry in the burning shells. The vigorous dynamics is more violent than that seen in earlier burning stages in the 3D simulations of a single cell in the oxygen burning shell, or in 2D simulations not including an active Si shell. Linear perturbative analysis does not capture the chaotic behavior of turbulence (e.g., strange attractors such as that discovered by Lorenz), and therefore badly underestimates the vigor of the instability. The limitations of 1D and 2D models are discussed in detail. The 2D models, although flawed geometrically, represent a more realistic treatment of the relevant dynamics than existing 1D models, and present a dramatically different view of the stages of evolution prior to collapse. Implications for interpretation of SN1987A, abundances in young supernova remnants, pre-collapse outbursts, progenitor structure, neutron star kicks, and fallback are outlined. While 2D simulations provide new qualitative insight, fully 3D simulations are needed for a quantitative understanding of this stage of stellar evolution. The necessary properties of such simulations are delineated.Comment: 26 pages, 1 table, 4 figure

    Observed Consequences of Presupernova Instability in Very Massive Stars

    Full text link
    This chapter concentrates on the deaths of very massive stars, the events leading up to their deaths, and how mass loss affects the resulting death. The previous three chapters emphasized the theory of wind mass loss, eruptions, and core collapse physics, but here we emphasize mainly the observational properties of the resulting death throes. Mass loss through winds, eruptions, and interacting binaries largely determines the wide variety of different types of supernovae that are observed, as well as the circumstellar environments into which the supernova blast waves expand. Connecting these observed properties of the explosions to the initial masses of their progenitor stars is, however, an enduring challenge and is especially difficult for very massive stars. Superluminous supernovae, pair instability supernovae, gamma ray bursts, and "failed" supernovae are all end fates that have been proposed for very massive stars, but the range of initial masses or other conditions leading to each of these (if they actually occur) are still very certain. Extrapolating to infer the role of very massive stars in the early universe is essentially unencumbered by observational constraints and still quite dicey.Comment: 39 pages, 5 figures, to appear as chapter in the book "Very Massive Stars in the Local Universe", ed. J. Vin

    Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation

    Get PDF
    We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with improved opacities, which recently succeeded in accounting for the third dredge-up. This opens the possibility of understanding low luminosity C stars (enriched in s-elements) as the normal outcome of AGB evolution, characterized by production of 12C and neutron-rich nuclei in the He intershell and by mass loss from strong stellar winds. Neutron captures in AGB stars are driven by two reactions: 13C(α,n)16O, which provides the bulk of the neutron flux at low neutron densities (Nn ≤ 107 n/cm3), and 22Ne(α,n)25Mg, which is mildly activated at higher temperatures and mainly affects the production of s-nuclei depending on reaction branchings. The first reaction is now known to occur in the radiative interpulse phase, immediately below the region previously homogenized by third dredge-up. The second reaction occurs during the convective thermal pulses. The resulting nucleosynthesis phenomena are rather complex and rule out any analytical approximation (exponential distribution of neutron fluences). Nucleosynthesis in AGB stars, modeled at different metallicities, account for several observational constraints, coming from a wide spectrum of sources: evolved red giants rich in s-elements, unevolved stars at different metallicities, presolar grains recovered from meteorites, and the abundances of s-process isotopes in the solar system. In particular, a good reproduction of the solar system main component is obtained as a result of Galactic chemical evolution that mixes the outputs of AGB stars of different stellar generations, born with different metallicities and producing different patterns of s-process nuclei. The main solar s-process pattern is thus not considered to be the result of a standard archetypal s-process occurring in all stars. Concerning the 13C neutron source, its synthesis requires penetration of small amounts of protons below the convective envelope, where they are captured by the abundant 12C forming a 13C-rich pocket. This penetration cannot be modeled in current evolutionary codes, but is treated as a free parameter. Future hydrodynamical studies of time dependent mixing will be required to attack this problem. Evidence of other insufficiencies in the current mixing algorithms is common throughout the evolution of low and intermediate mass stars, as is shown by the inadequacy of stellar models in reproducing the observations of CNO isotopes in red giants and in circumstellar dust grains. These observations require some circulation of matter between the bottom of convective envelopes and regions close to the H-burning shell (cool bottom processing). AGB stars are also discussed in the light of their possible contribution to the inventory of short-lived radioactivities that were found to be alive in the early solar system. We show that the pollution of the protosolar nebula by a close-by AGB star may account for concordant abundances of 26Al, 41Ca, 60Fe, and 107Pd. The AGB star must have undergone a very small neutron exposure, and be of small initial mass (M <= 1.5 [sols]). There is a shortage of 26Al in such models, that however remains within the large uncertainties of crucial reaction rates. The net 26Al production problem requires further investigation

    Extremely Strong ^{13}CO J=3-2 Line in the "Water Fountain" IRAS 16342-3814: Evidence for the Hot-Bottom Burning

    Full text link
    We observed four "water fountain" sources in the CO J=3-2 line emission with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in 2010-2011. The water fountain sources are evolved stars that form high-velocity collimated jets traced by water maser emission. The CO line was detected only from IRAS 16342-3814. The present work confirmed that the ^{12}CO to ^{13}CO line intensity ratio is ~1.5 at the systemic velocity. We discuss the origins of the very low ^{12}CO to ^{13}CO intensity ratio, as possible evidence for the "hot-bottom burning" in an oxygen-rich star, and the CO intensity variation in IRAS 16342-3814.Comment: 10 pages, 3 figures, accepted for publication to the Publications of the Astronomical Society of Japan, Vol. 64, No.
    corecore