7,680 research outputs found

    Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions

    Full text link
    Despite decades of work, gaining a first-principle understanding of amorphous materials remains an extremely challenging problem. However, recent theoretical breakthroughs have led to the formulation of an exact solution in the mean-field limit of infinite spatial dimension, and numerical simulations have remarkably confirmed the dimensional robustness of some of the predictions. This review describes these latest advances. More specifically, we consider the dynamical and thermodynamic descriptions of hard spheres around the dynamical, Gardner and jamming transitions. Comparing mean-field predictions with the finite-dimensional simulations, we identify robust aspects of the description and uncover its more sensitive features. We conclude with a brief overview of ongoing research.Comment: 5 figures, 26 page

    Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations

    Full text link
    Thin film processing by means of sputter deposition inherently depends on the interaction of energetic particles with a target surface and the subsequent particle transport. The length and time scales of the underlying physical phenomena span orders of magnitudes. A theoretical description which bridges all time and length scales is not practically possible. Advantage can be taken particularly from the well-separated time scales of the fundamental surface and plasma processes. Initially, surface properties may be calculated from a surface model and stored for a number of representative cases. Subsequently, the surface data may be provided to gas-phase transport simulations via appropriate model interfaces (e.g., analytic expressions or look-up tables) and utilized to define insertion boundary conditions. During run-time evaluation, however, the maintained surface data may prove to be not sufficient. In this case, missing data may be obtained by interpolation (common), extrapolation (inaccurate), or be supplied on-demand by the surface model (computationally inefficient). In this work, a potential alternative is established based on machine learning techniques using artificial neural networks. As a proof of concept, a multilayer perceptron network is trained and verified with sputtered particle distributions obtained from transport of ions in matter based simulations for Ar projectiles bombarding a Ti-Al composite. It is demonstrated that the trained network is able to predict the sputtered particle distributions for unknown, arbitrarily shaped incident ion energy distributions. It is consequently argued that the trained network may be readily used as a machine learning based model interface (e.g., by quasi-continuously sampling the desired sputtered particle distributions from the network), which is sufficiently accurate also in scenarios which have not been previously trained

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Mobile Firewall System For Distributed Denial Of Service Defense In Internet Of Things Networks

    Get PDF
    Internet of Things (IoT) has seen unprecedented growth in the consumer space over the past ten years. The majority of IoT device manufacturers do not, however, build their products with cybersecurity in mind. The goal of the mobile firewall system is to move mitigation of network-diffused attacks closer to their source. Attack detection and mitigation is enforced using a machine that physically traverses the area. This machine uses a suite of security tools to protect the network. Our system provides advantages over current network attack mitigation techniques. Mobile firewalls can be deployed when there is no access to the network gateway or when no gateway exists, such as in IoT mesh networks. The focus of this thesis is to refine an explicit implementation for the mobile firewall system and evaluate its effectiveness. Evaluation of the mobile firewall system is analyzed using three simulated distributed denial of service case studies. Mobility is shown to be a great benefit when defending against physically distant attackers – the system takes no more than 131 seconds to fully nullify a worst-case attack
    • …
    corecore