1,211 research outputs found

    Achievable secrecy enchancement through joint encryption and privacy amplification

    Get PDF
    In this dissertation we try to achieve secrecy enhancement in communications by resorting to both cryptographic and information theoretic secrecy tools and metrics. Our objective is to unify tools and measures from cryptography community with techniques and metrics from information theory community that are utilized to provide privacy and confidentiality in communication systems. For this purpose we adopt encryption techniques accompanied with privacy amplification tools in order to achieve secrecy goals that are determined based on information theoretic and cryptographic metrics. Every secrecy scheme relies on a certain advantage for legitimate users over adversaries viewed as an asymmetry in the system to deliver the required security for data transmission. In all of the proposed schemes in this dissertation, we resort to either inherently existing asymmetry in the system or proactively created advantage for legitimate users over a passive eavesdropper to further enhance secrecy of the communications. This advantage is manipulated by means of privacy amplification and encryption tools to achieve secrecy goals for the system evaluated based on information theoretic and cryptographic metrics. In our first work discussed in Chapter 2 and the third work explained in Chapter 4, we rely on a proactively established advantage for legitimate users based on eavesdropper’s lack of knowledge about a shared source of data. Unlike these works that assume an errorfree physical channel, in the second work discussed in Chapter 3 correlated erasure wiretap channel model is considered. This work relies on a passive and internally existing advantage for legitimate users that is built upon statistical and partial independence of eavesdropper’s channel errors from the errors in the main channel. We arrive at this secrecy advantage for legitimate users by exploitation of an authenticated but insecure feedback channel. From the perspective of the utilized tools, the first work discussed in Chapter 2 considers a specific scenario where secrecy enhancement of a particular block cipher called Data Encryption standard (DES) operating in cipher feedback mode (CFB) is studied. This secrecy enhancement is achieved by means of deliberate noise injection and wiretap channel encoding as a technique for privacy amplification against a resource constrained eavesdropper. Compared to the first work, the third work considers a more general framework in terms of both metrics and secrecy tools. This work studies secrecy enhancement of a general cipher based on universal hashing as a privacy amplification technique against an unbounded adversary. In this work, we have achieved the goal of exponential secrecy where information leakage to adversary, that is assessed in terms of mutual information as an information theoretic measure and Eve’s distinguishability as a cryptographic metric, decays at an exponential rate. In the second work generally encrypted data frames are transmitted through Automatic Repeat reQuest (ARQ) protocol to generate a common random source between legitimate users that later on is transformed into information theoretically secure keys for encryption by means of privacy amplification based on universal hashing. Towards the end, future works as an extension of the accomplished research in this dissertation are outlined. Proofs of major theorems and lemmas are presented in the Appendix

    Secure Lossy Source Coding with Side Information at the Decoders

    Full text link
    This paper investigates the problem of secure lossy source coding in the presence of an eavesdropper with arbitrary correlated side informations at the legitimate decoder (referred to as Bob) and the eavesdropper (referred to as Eve). This scenario consists of an encoder that wishes to compress a source to satisfy the desired requirements on: (i) the distortion level at Bob and (ii) the equivocation rate at Eve. It is assumed that the decoders have access to correlated sources as side information. For instance, this problem can be seen as a generalization of the well-known Wyner-Ziv problem taking into account the security requirements. A complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated side informations at the decoders is derived. Several special cases of interest and an application example to secure lossy source coding of binary sources in the presence of binary and ternary side informations are also considered. It is shown that the statistical differences between the side information at the decoders and the presence of non-zero distortion at the legitimate decoder can be useful in terms of secrecy. Applications of these results arise in a variety of distributed sensor network scenarios.Comment: 7 pages, 5 figures, 1 table, to be presented at Allerton 201
    • …
    corecore