661 research outputs found

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    User-Antenna Selection for Physical-Layer Network Coding based on Euclidean Distance

    Full text link
    In this paper, we present the error performance analysis of a multiple-input multiple-output (MIMO) physical-layer network coding (PNC) system with two different user-antenna selection (AS) schemes in asymmetric channel conditions. For the first antenna selection scheme (AS1), where the user-antenna is selected in order to maximize the overall channel gain between the user and the relay, we give an explicit analytical proof that for binary modulations, the system achieves full diversity order of min(NA,NB)×NRmin(N_A , N_B ) \times N_R in the multiple-access (MA) phase, where NAN_A, NBN_B and NRN_R denote the number of antennas at user AA, user BB and relay RR respectively. We present a detailed investigation of the diversity order for the MIMO-PNC system with AS1 in the MA phase for any modulation order. A tight closed-form upper bound on the average SER is also derived for the special case when NR=1N_R = 1, which is valid for any modulation order. We show that in this case the system fails to achieve transmit diversity in the MA phase, as the system diversity order drops to 11 irrespective of the number of transmit antennas at the user nodes. Additionally, we propose a Euclidean distance (ED) based user-antenna selection scheme (AS2) which outperforms the first scheme in terms of error performance. Moreover, by deriving upper and lower bounds on the diversity order for the MIMO-PNC system with AS2, we show that this system enjoys both transmit and receive diversity, achieving full diversity order of min(NA,NB)×NR\min(N_A, N_B) \times N_R in the MA phase for any modulation order. Monte Carlo simulations are provided which confirm the correctness of the derived analytical results.Comment: IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1709.0445

    Maximum Euclidean distance network coded modulation for asymmetric decode-and-forward two-way relaying

    No full text
    Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a target bit error probability (BEP). Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3 dB signal-to-noise ratio gain and two times diversity gain

    Outage analysis of superposition modulation aided network coded cooperation in the presence of network coding noise

    No full text
    We consider a network, where multiple sourcedestination pairs communicate with the aid of a half-duplex relay node (RN), which adopts decode-forward (DF) relaying and superposition-modulation (SPM) for combining the signals transmitted by the source nodes (SNs) and then forwards the composite signal to all the destination nodes (DNs). Each DN extracts the signals transmitted by its own SN from the composite signal by subtracting the signals overheard from the unwanted SNs. We derive tight lower-bounds for the outage probability for transmission over Rayleigh fading channels and invoke diversity combining at the DNs, which is validated by simulation for both the symmetric and the asymmetric network configurations. For the high signal-to-noise ratio regime, we derive both an upperbound as well as a lower-bound for the outage performance and analyse the achievable diversity gain. It is revealed that a diversity order of 2 is achieved, regardless of the number of SN-DN pairs in the network. We also highlight the fact that the outage performance is dominated by the quality of the worst overheated link, because it contributes most substantially to the network coding noise. Finally, we use the lower bound for designing a relay selection scheme for the proposed SPM based network coded cooperative communication (SPM-NC-CC) system.<br/

    Design And Performance Analysis Of Enhanced Network Coded Cooperative Communication Systems

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2017Kablosuz haberleşme sistemi birbiriyle haberleşebilen birçok hareketli düğüm noktasından oluşmaktadır. Sönümleme ise kablosuz haberleşme sistemlerinin performansını olumsuz yönde etkileyen önemli faktörlerden biridir. Sönümlemenin mevcut olduğu ortamlarda güvenilir bir haberleşme için kanal kodlama ve çeşitleme teknikleri önerilmiş ve uygulanmıştır. Bunlardan biri, çeşitleme kazancı elde ederek olabildiğince hatasız veri iletimi gerçekleştirmek üzere her bir terminalde çoklu verici ve alıcı düğümleri kullanan çok girişli çok çıkışlı çeşitleme (MIMO) tekniğidir. Fakat işbirlikli çeşitleme tekniği bunu her bir terminalde birden çok verici anten kullanmadan gerçekleştirebilmektedir. Kablosuz yayın ortamı komşu röle düğümlerin işbirliği yapmasına imkan sağlayarak verinin kaynak düğümlerden hedef düğümlere aktarılması sırasındaki sönümleme etikisini azaltmaktadır. Bu sebeple, işbirlikli haberleşme sistemi veri iletimi sırasında röle düğümler ile oluşturulan birden çok haberleşme ağının kullanılmasını ve kendiliğinden oluşan uzaysal kanal çeşitlemesinden faydalanılmasını mümkün kılmaktadır. Doğrudan veri iletimi kullanan klasik tek atlamalı haberleşme sistemlerinde bir alıcı doğrudan gelen işaretin içerisindeki veriyi elde ederek yansıyan işaretleri girişim olarak algılarken, işbirlikli haberleşme sistemleri diğer işaretleri katkı olarak değerlendirmektedir. Böylelikle işbirlikli çeşitlemede veri iki ya da daha çok işaretin birlikte değerlendirilmesiyle elde etmektedir. Başka bir deyişle, işbirlikli çeşitleme kablosuz haberleşme ağlarında bulunan her bir düğümdeki antenin dağıtık olarak kullanıldığı bir anten çeşitleme tekniğidir. Hareketli düğümlerin (mobile nodes) güç, bant genişliği ve boyut gibi kısıtları sebebiyle diğer çeşitleme tekniklerinin kanal sönümlemesine karşı kullanılamadığı kablosuz tasarsız (ad hoc) algılayıcı ağları için işbirlikli çeşitleme özellikle faydalı olmaktadır. Bütün senaryolar için, hareketli kullanıcılar arasında işbirliği olan kablosuz sistemler bu işbirliğinin olmadığı diğer sistemlere göre daha yüksek bir sığa potansiyeline sahiptir. Fakat, işbirlikli haberleşme ile hata performansında elde edilen iyileşme çoğu durumda kablosuz ağdaki iletim hızından feragat ile mümkündür. Bu gibi durumlarda, ağ kodlama tekniği sayesinde röle düğümlere gönderilmiş olan veri paketlerinin akıllı bir şekilde birleştirilmesi ile işbirlikli kablosuz ağlardaki veri hızında ciddi bir iyileştirme sağlanabilmektedir. Ağ kodlama esasen kayıpsız haberleşme sistemlerinde yönlendirme ağlarının verimini artırmak için geliştirilmiştir. Fakat, ağ kodlama ile işbirlikli kablosuz ağların tümleştirilmesi (entegrasyonu) sönümlemenin bulunduğu ortamlarda kaynakların daha verimli bir şekilde kullanılması ve hata performansının iyileştirilmesi yönünde ciddi bir potansiyele sahiptir. Ağ kodlama, 5G standartlarının ötesindeki kablosuz ağlarda sürekli artan kullanıcı ve cihazların taleplerini karşılayabilecek kabiliyete sahiptir. Kablosuz sistemlerin yayın doğası işbirlikli haberleşme ve ağ kodlamanın beraber uygulanmasını ve bu iki tekniğin faydalarından yararlanmayı mümkün kılmaktadır. Bu bağlamda, son yıllarda mevcut literatürde çeşitli ağ kodlama teknikleri değerlendirilmekte fakat her yöntem röle düğümlerdeki veri paketleri işlevlerinin birleştirilmesi ve iletilmesini kapsamaktadır. Bu tezde, rastgele doğrusal ağ kodlama, karmaşık alan ağ kodlama ve XOR ağ kodlama tekniklerinin benzetimleri yapılmış ve çeşitli bakış açıları ile analiz edilmiştir. Tezin ilk bölümünde, Rayleigh ve Rician sönümleme kanalları için varış düğümlerindeki kod çözme hata olasılığı üzerinden rastgele doğrusal ağ kodlama sistemlerinin performansı incelenmektedir. Doğrusal ağ kodlama sistemlerinde, ara düğümlerdeki veri bitleri paket vektörler olarak alınmakta ve ara düğümler belirli bir boyutta ve eşit olasılıklı Galois kümesinden çıkarılan katsayılar ile alınan paketleri doğrusal olarak birleştirerek veriyi çözmektedir. Bu bölümdeki benzetim ortamı birden çok kaynak ile röle ve varış düğümlerinden oluşmakta; kaynak ve varış noktaları arasında ise doğrudan bağlantılar bulunmamaktadır. Belirtilen sistemdeki haberleşme kanalı kesintileri ve dolayısıyla paket kayıpları sönümleme etkisiyle oluşmaktadır. Belirtilen sistem modeli için ortaya çıkan benzetim sonuçları, paket çözümündeki kayıp olasılığının sadece sönümleme ortamı değil röle düğümlerde ağ kodlama için kullanılan katsayılar tarafından da belirlendiğini göstermektedir. Sönümleme kanallarındaki çözümleme kayıp olasılıkları röle düğümlerdeki paketlerin doğrusal olarak birleştirilmesi sırasında kullanılan rastgele katsayıları barındıran Galois kümesinin boyutu artırılarak düşürülebilmektedir. Tezin ikinci kısmında ise, karmaşık alan ağ kodlamasının bit hat oranı performansı frekans seçmeli Rayleigh sönümleme kanalları için dik frekans bölmeli çoğullama (OFDM) kullanılarak analiz edilmiştir. Daha önceki çalışmalarda, bu analiz düz sönümleme kanalları için yapılmıştır. Performans değerlendirmesinde kullanılan sistem modeli birden çok kaynak düğümü, tekli ya da çoklu röle düğümleri ve tek varış düğümü içermektedir. Hem kuvvetlendir ve aktar hem de çöz ve aktar tipi röleler için hata performansı elde edilmekte ve çoklu röle sistemleri için röle seçimi hem kuvventlendir ve aktar hem de çöz ve aktar seçenekleri için ele alınmaktadır. Katlamalı kanal kodları da opsiyonel olarak mevcut sisteme performansı artırmak için eklenebilmekte ve sert kararlı (hard decision) Viterbi Algoritması kaynak bitleri çözmek için kullanılmaktadır. Buna ek olarak, kaynak ve varış noktalarına farklı uzaklıklardaki röle düğümlerinde asimetrik bağlantı ortamları da değerlendirilmiştir. Daha önce bahsedilen senaryo kapsamında hedef ve/veya röle düğümlerde her bir bitin aynı zamanda elde edilmesi için OFDM ile birlikte çoklu kullanıcı belirleme kuralları uygulanmıştır. Benzetim sonuçları, rölelerdeki analog dalga formunun kaydedilmesini gerektirmesi dolayısıyla uygulama açısından pratik olmasa da her durumda kuvvetlendir ve aktar röle düğümlerinin, çöz ve aktar tipi röle düğümlerinden daha iyi performansa sahip olduğunu göstermektedir. Dahası, sistem modelinde hem kuvvetlendir ve aktar hem de çöz ve aktar tipi röleler ile röle seçimi yapıldığında hata performansında hatırı sayılır bir iyileştirme gözlenmektedir. Son olarak, asimetrik ağlarda, daha iyi bir hata performansı röle düğümlerinin kaynak düğümlerine daha yakın yerleştirilmesi ile elde edilebilmektedir. Tezin üçüncü kısmında, ele alınan tekniklerin faydalı yönlerini birleştirecek şekilde, OFDM kullanan kanal kodlamalı karmaşık alan ağ kodlama tekniği önerilmekte ve bit hata oranı üzerinden performans değerlendirmesi yapılmaktadır. Buradaki çalışma OFDM kullanan katlamalı kanal kodlamalı karmaşık alan ağ kodlama ve ikinci bölümde bahsedilen sert kararlı (hard decision) Viterbi Algoritmasının genişletilmesidir. Sistem modeli ikinci kısımdaki ile aynı olmakla birlikte yavaş ve frekans seçimli Rayleigh sönümleme kanalı içermektedir. Yine hem kuvvetlendir ve aktar hem de çöz ve aktar türü röleler bu bağlamda değerlendirilmiş ve birden çok röle içeren senaryolarda röle seçimi uygulanmıştır. Fakat, bu bölümde kodlanmış kaynak bitlerinin elde edilmesi için yumuşak kararlı (soft decision) Viterbi Algoritması ve Max-Log-MAP kod çözme teknikleri kullanılmakta ve böylelikle çok kullanıcı belirleme kuralları kodlanmış kaynak bitleri için log likelihood oranlarını sağlamaktadır. Dahası, kafeste farklı kod oranlarına ve durum sayılarına sahip katlamalı kodlar ve asimetrik bağlantı ortamları için performans analizi verilmektedir. Benzetim sonuçlarına göre, hem yumuşak kararlı Viterbi hem de Max- Log-MAP kanal çözümleme tekniklerinin belirtilen sistem modelinde aynı bit hatası performansına sahip olduğu görülmektedir. Kuvventlendir ve aktar yöntemi çöz ve aktar yöntemine göre her durumda daha iyi sonuç vermekte ve röle seçim teknikleri fark edilir bir performans iyileştirmesine sebep olmaktadır. Daha düşük kod oranlı ve daha çok kafes durumuna (trellis state) sahip katlamalı kodlar sistem performansını ciddi bir şekilde artırmakta ve asimetrik bağlantılarda aynı şekilde performansın iyileştirilmesi amacına katkı yapmaktadır. Tezin son bölümü OFDM ile birleştirilmiş iki yönlü röle ağları için XOR ağ kodlama tekniğinin geliştirilmiş versiyonu ile ilgilidir. İki yönlü röle ağları için geliştirilen geleneksel stratejiler ile karşılaştırıldığında, bu stratejide Galois küme eklemesi veya kaynaklarda çoklu veri paketlerinin bit XOR kodlaması uygulanmaktadır. XOR kodlamalı paket, iki yönlü röle ağının hata performansını artırmak için verici çeşitleme kazancı elde etmek üzere artıklık barındıran veri paketleri ile birlikte röle düğümlerine iletilmektedir. Sistem modeli, iki kaynak ve istenen hata performansının elde edilmesi için farklı sayıda ve katlamalı kanal kodlamalı röle düğümleri içermektedir. Sistemde birden çok röle olduğu durumda röle seçimi de yapılmakta ve bu sayede sadece hata performansı artırılmamakta aynı zamanda verimlilik de artmaktadır. Sonuçlar, iki yönlü röle ağının iletim ucunda sağlanan artıklık ile sistemde bit hatası performansının artırıldığını göstermektedir.A wireless communication system consists of multiple wireless nodes that can move around and communicate with each other. Fading is one of major degrading factors that can limit the performance of wireless communication systems. In order to achieve reliable communication in fading environments, channel coding and diversity techniques were proposed and implemented. Multiple input multiple output (MIMO) is one of the diversity techniques which uses multiple transmission and reception nodes per terminal to obtain diversity gains for reduced errors in the transmission of data. But cooperative diversity techniques can realize this purpose without installing multiple transmission antennas per terminal. The broadcasting nature of wireless medium allows neighbouring relay nodes to cooperate in communication by forwarding information from source nodes to destination nodes for fading mitigation. Therefore, cooperative communication system utilizes multiple communication routes created by relay nodes and exploits the inherent spatial diversity of the channel for information transmission. While classical single hop communication systems use direct transmission in which a receiver recovers the information using the direct signal only and regarding the reflected signal as interference, the cooperative communication systems consider the other signal as contribution. Therefore, cooperative diversity retrieves information from the combination of two or more signals. In other words, cooperative diversity is a virtual antenna diversity technique that uses distributed antennas belonging to each node in a wireless network for communication. Cooperative diversity is particularly considered useful in wireless ad hoc and sensor networks, where power/bandwidth/size restrictions of the mobile nodes may prevent the use of other diversity techniques to combat channel fading. In all scenarios, cooperation among mobile users of a wireless system has the potential to provide an increased capacity in comparison with the systems without using cooperation. However, in most cases, cooperative communication attains this improvement in error performance by sacrificing the throughput of wireless network. In such cases, network coding technique can substantially improve the data rate of cooperative wireless networks by intelligently combining the forwarded packets of information at the relay nodes. Network coding was originally proposed for lossless communication systems to increase the throughput of routing networks. But the integration of network coding with cooperative wireless networks has the potential to ensure more efficient usage of resources with improved error performance in fading environments. Network coding can ensure the capability to address the ever increasing number of users and devices in wireless networks, in beyond 5G standards. The broadcast nature of wireless systems allows the joint implementation of cooperative communication and network coding, exploiting the benefits of both techniques. In this context, several types of network coding have been discussed in literature in the recent years but each type involves the concept of combining and transmitting the functions of information packets at the relay nodes. In this thesis, random linear network coding, complex field network coding and exclusive-OR (XOR) network coding are simulated and analyzed in different perspectives. In the first part of this thesis, the performance of random linear network coding systems is investigated for Rayleigh and Rician fading channels in terms of decoding failure probabilities at destination nodes. In random linear network coding systems, the information bits at the intermediate nodes are received as packet vectors and the intermediate nodes encode the information data by linearly combining the received packets, with coefficients randomly extracted from the Galois field of a particular size, with equal probability. The setup considered in this section consists of multiple source, relay and destination nodes, with no direct links between sources and destinations. The communication channel outage and hence the packet loss in the given system occurs due to fading. The simulation results for the supposed system model show that the packet decoding failure probabilities are not only determined by the fading environment but also by the coefficients used in the network coding at the relay nodes. In fading channels, decoding failure probabilities can be reduced by increasing the size of the Galois field that contains random coefficients for linear combination of packets at relay nodes. In the second part of this thesis, the bit error rate performance of complex field network coding is analyzed with orthogonal frequency division multiplexing (OFDM) for frequency selective Rayleigh fading channels. In previous literatures, this analysis is performed for flat fading channels. The system model used in the performance evaluation contains multiple source nodes, single or multiple relay nodes and a single destination node. Both amplify and forward as well as decode and forward types of relays are assumed to obtain error performance results and for multi-relay system, relay selection is also taken into account for both amplify and forward and decode and forward relay types. Convolutional channel codes are also optionally integrated in the given system to boost the system performance and hard decision Viterbi decoding is used to decode source bits. In addition to this, asymmetric link environments, with relay nodes at different distances from sources and destination, are also considered. Multiuser detection rules with OFDM are employed at destination node and/or relay nodes to retrieve each source bits at the same time, for the above mentioned scenarios. The simulation results indicate that amplify and forward relay nodes outperform decode and forward relay nodes in all cases but are not very suitable from the implementation perspective since they require the storage of analog waveform at relays. Moreover, a considerable improvement is error performance can be observed when relay selection is provided in the system model with both amplify and forward and decode and forward types of relays. Finally, in asymmetric network, better error performance can be achieved by placing relay nodes closer to the source nodes. The third part of this thesis proposes the channel coded complex field network coding with OFDM, combining the mutual benefits of all the techniques involved and the performance evaluation is made in terms of bit error rate. This work is the extension of the Convolutional channel coded complex field network coding with OFDM and hard decision Viterbi decoding, presented in the second part. The system model is same as the second part with slow and frequency selective Rayleigh fading channel. Again, both amplify and forward and decode and forward types of relays are considered in this context and relay selection is employed in scenarios with multiple relays. However, this part uses soft decision Viterbi and Max-Log-MAP decoding techniques for obtaining coded source bits and therefore, in this case, the multiuser detection rules provide log likelihood ratios for coded source bits. Moreover, the performance analysis is provided for Convolutional codes with different code rates and number of states in the trellis as well as for asymmetric link environments. From simulation results, it is seen that both soft decision Viterbi and Max-Log-MAP channel decoding techniques provide almost same bit error performance in the given system model. Amplify and forward performs better than decode and forward in all cases and relay selection techniques results in a noticeable performance gain. Convolutional codes with lower code rate and more number of trellis states can enhance the system performance considerably and asymmetric links also serve the similar purpose of performance improvement. The final part of thesis is related to an enhanced version of XOR network coding scheme for two-way relay networks, combined with OFDM. Compared to other conventional strategies for two-way relay networks, this strategy performs Galois field addition or bit-wise XOR coding of multiple information packets at sources. The XOR coded packet is transmitted to the relay nodes along with the information packets which facilitates redundancy to acquire transmit diversity gain for improving error performance of the two-way relay network. The system model consists of two source and different number of relay nodes with Convolutional channel encoding in the system to obtain desired error performance. Relay selection is also provided when there are multiple relays in the system and this provision not only improves the error performance but also gives better throughput. The results show that the redundancy provided at the transmission end of two-way relay network enhances bit error performance of the system.Yüksek LisansM.Sc
    corecore