2,125 research outputs found

    Analysis of Polarimetric Synthetic Aperture Radar and Passive Visible Light Polarimetric Imaging Data Fusion for Remote Sensing Applications

    Get PDF
    The recent launch of spaceborne (TerraSAR-X, RADARSAT-2, ALOS-PALSAR, RISAT) and airborne (SIRC, AIRSAR, UAVSAR, PISAR) polarimetric radar sensors, with capability of imaging through day and night in almost all weather conditions, has made polarimetric synthetic aperture radar (PolSAR) image interpretation and analysis an active area of research. PolSAR image classification is sensitive to object orientation and scattering properties. In recent years, significant work has been done in many areas including agriculture, forestry, oceanography, geology, terrain analysis. Visible light passive polarimetric imaging has also emerged as a powerful tool in remote sensing for enhanced information extraction. The intensity image provides information on materials in the scene while polarization measurements capture surface features, roughness, and shading, often uncorrelated with the intensity image. Advantages of visible light polarimetric imaging include high dynamic range of polarimetric signatures and being comparatively straightforward to build and calibrate. This research is about characterization and analysis of the basic scattering mechanisms for information fusion between PolSAR and passive visible light polarimetric imaging. Relationships between these two modes of imaging are established using laboratory measurements and image simulations using the Digital Image and Remote Sensing Image Generation (DIRSIG) tool. A novel low cost laboratory based S-band (2.4GHz) PolSAR instrument is developed that is capable of capturing 4 channel fully polarimetric SAR image data. Simple radar targets are formed and system calibration is performed in terms of radar cross-section. Experimental measurements are done using combination of the PolSAR instrument with visible light polarimetric imager for scenes capturing basic scattering mechanisms for phenomenology studies. The three major scattering mechanisms studied in this research include single, double and multiple bounce. Single bounce occurs from flat surfaces like lakes, rivers, bare soil, and oceans. Double bounce can be observed from two adjacent surfaces where one horizontal flat surface is near a vertical surface such as buildings and other vertical structures. Randomly oriented scatters in homogeneous media produce a multiple bounce scattering effect which occurs in forest canopies and vegetated areas. Relationships between Pauli color components from PolSAR and Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging are established using real measurements. Results show higher values of the red channel in Pauli color image (|HH-VV|) correspond to high DOLP from double bounce effect. A novel information fusion technique is applied to combine information from the two modes. In this research, it is demonstrated that the Degree of Linear Polarization (DOLP) from passive visible light polarimetric imaging can be used for separation of the classes in terms of scattering mechanisms from the PolSAR data. The separation of these three classes in terms of the scattering mechanisms has its application in the area of land cover classification and anomaly detection. The fusion of information from these particular two modes of imaging, i.e. PolSAR and passive visible light polarimetric imaging, is a largely unexplored area in remote sensing and the main challenge in this research is to identify areas and scenarios where information fusion between the two modes is advantageous for separation of the classes in terms of scattering mechanisms relative to separation achieved with only PolSAR

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on seven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Contract ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057National Aeronautics and Space Administration Contract NAGW-1617U.S. Navy - Office of Naval Research Contract N00014-89-J-1107National Aeronautics and Space Administration Contract NAGW-1272National Aeronautics and Space Administration Contract 958461Simulation Technologies Contract DAAH01-87-C-0679U.S. Army Corp of Engineers Contract DACA39-87-K-0022WaveTracer, Inc.U.S. Navy - Office of Naval Research Contract N00014-89-J-1019U.S. Air Force Systems - Electronic Systems Division Contract F19628-88-K-0013Digital Equipment CorporationInternational Business Machines CorporationU.S. Department of Transportation Contract DTRS-57-88-C-0007

    SARCASTIC v2.0 - High-performance SAR simulation for next-generation ATR systems

    Get PDF
    Synthetic aperture radar has been a mainstay of the remote sensing field for many years, with a wide range of applications across both civilian and military contexts. However, the lack of openly available datasets of comparable size and quality to those available for optical imagery has severely hampered work on open problems such as automatic target recognition, image understanding and inverse modelling. This paper presents a simulation and analysis framework based on the upgraded SARCASTIC v2.0 engine, along with a selection of case studies demonstrating its application to well-known and novel problems. In particular, we demonstrate that SARCASTIC v2.0 is capable of supporting complex phase-dependent processing such as interferometric height extraction whilst maintaining near-realtime performance on complex scenes

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Laboratory Studies of the Electromagnetic Properties of Saline Ice: A Multi-disciplinary Research Plan Submitted to the Office of Naval Research

    Get PDF
    This plan describes laboratory and theoretical research to be carried out under the Sea Ice Electromagnetics Accelerated Research Initiative of the Office of Naval Research. The plan is built around three broad objectives: 1) to understand the mechanisms and processes that link the orphological/physical and the electromagnetic properties of sea ice; 2) to further develop and verify predictive models for the interaction of visible, infrared and microwave radiation with sea ice; 3) to develop and verify selected techniques in the mathematical theory of inverse scattering that are applicable to problems arising in the interaction of EM radiation with sea ice. The plan will be executed by over 30 investigators from 15 institutions. Research includes measuring and quantifying the physical properties of sea ice, collecting radiometric signatures of different ice types and morphologies, developing and testing forward models of scattering and emission from sea ice, and developing and testing inverse models to extract geophysical data about sea ice from remotely sensed data. Experiments will begin in January of 1993 at the Cold Regions Research and Engineering Laboratory in Hanover, New Hampshire. Work will focus around studies on the Geophysical Research Facility which is a new, concrete lined pool filled with saline water. The facility can be shielded from local fluctuations in weather by using a movable roof and refrigerated blanket. Three measurement series are planned for the winter of 1993. These will focus on collecting data on the microwave and optical properties of an undeformed ice sheet grown from the melt. Measurements to resolve the contributions of volume and surface scattering to sea ice signatures will be performed on an artificially roughened ice sheet. A snow covered ice sheet will be created to study the effects of brine wicking and scattering from snow grains on electromagnetic signatures. Data from these measurements will be used to evaluate the performance of existing forward models. The data will also be used to begin the development of inverse models.The Office of Naval Researc

    Detection of Building Damages in High Resolution SAR Images based on SAR Simulation

    Get PDF

    Digital Image Processing

    Get PDF
    Newspapers and the popular scientific press today publish many examples of highly impressive images. These images range, for example, from those showing regions of star birth in the distant Universe to the extent of the stratospheric ozone depletion over Antarctica in springtime, and to those regions of the human brain affected by Alzheimer’s disease. Processed digitally to generate spectacular images, often in false colour, they all make an immediate and deep impact on the viewer’s imagination and understanding. Professor Jonathan Blackledge’s erudite but very useful new treatise Digital Image Processing: Mathematical and Computational Methods explains both the underlying theory and the techniques used to produce such images in considerable detail. It also provides many valuable example problems - and their solutions - so that the reader can test his/her grasp of the physical, mathematical and numerical aspects of the particular topics and methods discussed. As such, this magnum opus complements the author’s earlier work Digital Signal Processing. Both books are a wonderful resource for students who wish to make their careers in this fascinating and rapidly developing field which has an ever increasing number of areas of application. The strengths of this large book lie in: • excellent explanatory introduction to the subject; • thorough treatment of the theoretical foundations, dealing with both electromagnetic and acoustic wave scattering and allied techniques; • comprehensive discussion of all the basic principles, the mathematical transforms (e.g. the Fourier and Radon transforms), their interrelationships and, in particular, Born scattering theory and its application to imaging systems modelling; discussion in detail - including the assumptions and limitations - of optical imaging, seismic imaging, medical imaging (using ultrasound), X-ray computer aided tomography, tomography when the wavelength of the probing radiation is of the same order as the dimensions of the scatterer, Synthetic Aperture Radar (airborne or spaceborne), digital watermarking and holography; detail devoted to the methods of implementation of the analytical schemes in various case studies and also as numerical packages (especially in C/C++); • coverage of deconvolution, de-blurring (or sharpening) an image, maximum entropy techniques, Bayesian estimators, techniques for enhancing the dynamic range of an image, methods of filtering images and techniques for noise reduction; • discussion of thresholding, techniques for detecting edges in an image and for contrast stretching, stochastic scattering (random walk models) and models for characterizing an image statistically; • investigation of fractal images, fractal dimension segmentation, image texture, the coding and storing of large quantities of data, and image compression such as JPEG; • valuable summary of the important results obtained in each Chapter given at its end; • suggestions for further reading at the end of each Chapter. I warmly commend this text to all readers, and trust that they will find it to be invaluable. Professor Michael J Rycroft Visiting Professor at the International Space University, Strasbourg, France, and at Cranfield University, England

    The application of remote sensing techniques: Technical and methodological issues

    Get PDF
    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included

    Peaceful Uses of Earth-Observation Spacecraft. Volume III - Sensor Requirements and Experiments

    Get PDF
    Earth orbit spacecraft sensors and manned space flight experiments for peaceful use

    Bispectrum- and Bicoherence-Based Discriminative Features Used for Classification of Radar Targets and Atmospheric Formations

    Get PDF
    This chapter is dedicated to bispectrum-based signal processing in the surveillance radar applications. Detection, recognition, and classification of the targets by surveillance radars have various applications including security, military intelligence, battlefield purposes, boundary protection, as well as weather forecast. One of the particular and effective discriminative features commonly exploited in modern radar automatic target recognition (ATR) systems is the micro-Doppler (m-D) contributions extracted from joint time-frequency (TF) distribution. However, a common drawback of the energy-based strategy lies in the impossibility to retrieve additional particular information related to frequency-coupling and phase-coupling contributions containing in the radar backscattering. Phase coupling contains additional discriminative features related to individual target properties. Bispectrum-based strategy allows retrieving a phase-coupled data containing unique discriminative features related to individual target properties. Bispectrum tends to zero for a stationary zero-mean additive white Gaussian noise (AWGN), providing smoothing of AWGN in TF distributions. Hence, bispectrum-based approach allows improving extraction of robust discriminative features for ATR radar systems
    • …
    corecore