38 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Enabling Optical Wired and Wireless Technologies for 5G and Beyond Networks

    Get PDF
    The emerging fifth-generation mobile communications are envisaged to support massive number of deployment scenarios based on the respective use case requirements. The requirements can be efficiently attended with ultradense small-cell cloud radio access network (C-RAN) approach. However, the C-RAN architecture imposes stringent requirements on the transport networks. This book chapter presents high-capacity and low-latency optical wired and wireless networking solutions that are capable of attending to the network demands. Meanwhile, with optical communication evolutions, there has been advent of enhanced photonic integrated circuits (PICs). The PICs are capable of offering advantages such as low-power consumption, high-mechanical stability, low footprint, small dimension, enhanced functionalities, and ease of complex system architectures. Consequently, we exploit the PICs capabilities in designing and developing the physical layer architecture of the second standard of the next-generation passive optical network (NG-PON2) system. Apart from being capable of alleviating the associated losses of the transceiver, the proposed architectures aid in increasing the system power budget. Moreover, its implementation can significantly help in reducing the optical-electrical-optical conversions issue and the required number of optical connections, which are part of the main problems being faced in the miniaturization of network elements. Additionally, we present simulation results for the model validation

    Spectrally efficient and low cost time and wavelength division multiplexed passive optical network systems

    Get PDF
    The next-generation passive optical network stage 2 (NG-PON2) intends to support stacking 10 Gb/s wavelengths and maintaining the compatibility with the deployed legacy passive optical network (PON) systems. Essentially, Time and Wavelength Division Multiplexed-PON (TWDM-PON) is the best solution for NGPON2 that aims to support a symmetric 40 Gb/s data rate transmission, a split ratio of 1:64 and a distance up to 60 km. Unfortunately, most of the existing low cost and practical TWDM-PON solutions are still incapable to support remote users and inefficient for spectral bandwidth in higher services. Typically, low cost transceivers are avoided as they suffer from significant frequency chirp that seriously impact its transmission performance at the bit rate above 10 Gb/s. Therefore, the objectives of this thesis are to improve the current TWDM-PON power budget in supporting more access services reaching the remote customers to enhance the bandwidth capacity at lower cost and to reduce the complexity implementation problem. This is achieved by overcoming the significant frequency chirp of the low cost transceivers used such as reflective semiconductor optical amplifier (RSOA) and directly modulated lasers (DMLs), which are suitable for high data rate transmission. The RSOA chirp is mitigated using a single bi-pass delay interferometer (DI) at the optical line terminal (OLT) while the DML chirp is managed by ensuring its resulting current is in phase with the bandwidth enhancement factor, , at both optical network unit (ONU) and OLT. Apart from that, DML equipped with dispersion compensation fiber (DCF) technique for power budget improvement is also proposed. Furthermore, low cost schemes for even higher data rate TWDM-PON up to 56 Gb/s is proposed utilizing highly spectral efficient 16-quadrature amplitude modulation (16-QAM). The results are obtained from physical layer simulation, OptisystemTrademark and MatlabTrademark, where relevant significant parts are verified through theoretical analysis. The simulation results demonstrate a sufficient dispersion compensation with a record of 56.6 dB power bughet for DML-based TWDM-PON transmission system. While results are not absolute due to variations that can occur in practical implementation, analysis demonstrates the feasibility of the proposed methods

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Modulation and Equalization Techniques for mmWave ARoF

    Get PDF
    Fifth generation (5G) is the emerging mobile communications platform that aims to meet the market requirements in terms of enhanced broadband connectivity based on harnessing small cell and mmWave technology. These two in synergy will provide high capacity gain not only through the hyperdense deployment of small cell but also through accessing large swathes of untapped spectrum at mmWave frequencies. The envisaged architecture entails an integrated optical wireless network architecture, where optical technology will complement radio in order to handle the new demands on capacity over the backhaul and fronthaul network, leading to the notion of analog radio over fiber (ARoF). The goal of this chapter is to provide novel approaches to optimize the performances of mmWave ARoF systems that includes developing enabling technology from a digital to signal processing (DSP) and device perspective

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica

    Analysis of passive optical network

    Get PDF
    With the increasing development of fiber optic communication technology, the needs of higher transmission rates, longer transmission distance, and greater transmission bandwidth are much stronger. Telecommunication companies tried to fulfil those needs by constantly reviewing and testing the performances of the applied Fiber Access Network System. This research is based on how we can design and analyses the optical fiber communication system. In this analysis, the Passive Optical Network architecture is planned to meet the requirements of the most common system which is Gigabit Passive Optical Networks (GPON). This design is simulated using the software OptiSystem 14.0 taking the realistic parameters of existing systems into account. According to The Full-Service Access Network (FSAN) the industry has converged on 2.488 gigabits per second (Gbit/s) of downstream bandwidth, and 1.244 Gbit/s of upstream bandwidth as the best solution to implement. The FSAN and ITU-T guide the efforts of user needs assessment for bandwidth to plan for smooth network upgrade that meets the user demand with optimal investment and let the user have many options to choose the bandwidth according to the needs within the financial grow capability. Additionally, on this project, a GPON design coexists with the new generation of NG-PON1 and NG-PON2 has been simulated and studied to analysis and compare using Optisystem which is a simulation system. The research stands for designing, testing the performance of the optical network by compensate minimum bit error and improve quality factor of the network. This model is designed from a data that has been obtained from existing networks in published papers and the main focus is to testing performance a GPON network in software Optisystem of the optical network by the minimum amount of BER, Q-factor, and power budget to achieve the requirement of the customers of the network
    corecore