297 research outputs found

    Study of a New Silicon Epitaxy Technique: Confined Lateral Selective Epitaxial Growth

    Get PDF
    This work describes a significant new advance in the technique of silicon selective epitaxy called Confined Lateral Selective Epitaxial Growth (CLSEG). CLSEG is a method for forming thin films of single crystal silicon on top of an insulating layer or film. Such thin films are generically termed Silicon-On- Insulator (SOI), and1 allow dielectric isolation of integrated circuit elements, making them more efficient (faster with lower power), more resistant to radiation, and smaller than conventional integrated circuits, ionizing radiation than conventional integrated circuits. CLSEG offers advantages over current methods of achieving SOI by being easily manufactured, inherently reproducible, and having greater design flexibility. CLSEG is also adaptable to vertical stacking of devices in a circuit, in what is called three-dimensional integration, for even greater reductions in area. In addition, CLSEG can be used for a wide variety of sensor and micromachining application. This thesis describes the design and development of CLSEG, and compares it to the current state of the art in the fields of SOI and Selective Epitaxial Growth (SEG). CLSEG is accomplished by growing silicon selective epitaxy within a cavity; which is formed of dielectric materials upon a silicon substrate. The resulting SOI film can be made as thin as 0.1 micron, and tens of microns wide, with an unlimited length. In particular, there is now strong evidence that surface diffusivity of silicon adatoms on the dielectric masking layers is a significant contributor to the transport of silicon to the growth surface during SE G. CLSEG silicon material quality is evaluated by fabricating a variety of semiconductor devices in CLSEG films. These devices demonstrate the applicability of CLSEG to integrated circuits, and provide a basis of comparison between CLSEG-grown silicon and device-quality substrate silicon. Then, CLSEG is used to fabricate an advanced device structure, verifying the value and significance of this new epitaxy technique. In the final two chapters, CLSEG is evaluated as a technology, and compared to the current state of the art. Then, a method is presented Tor forming CLSEG with only one photolithography step, and a process is described for making a SOI film across an entire silicon wafer using CLSEG. These techniques may indicate the feasibility of using CLSEG for three dimensional integration of microelectronics. It is hoped that this work will establish a firm basis for further study of this interesting and valuable new technology

    Design and simulation of strained-Si/strained-SiGe dual channel hetero-structure MOSFETs

    Get PDF
    With a unified physics-based model linking MOSFET performance to carrier mobility and drive current, it is shown that nearly continuous carrier mobility increase has been achieved by introduction of process-induced and global-induced strain, which has been responsible for increase in device performance commensurately with scaling. Strained silicon-germanium technology is a hot research area, explored by many different research groups for present and future CMOS technology, due to its high hole mobility and easy process integration with silicon. Several heterostructure architectures for strained Si/SiGe have been shown in the literature. A dual channel heterostructure consisting of strained Si/Si1-xGex on a relaxed SiGe buffer provides a platform for fabricating MOS transistors with high drive currents, resulting from high carrier mobility and carrier velocity, due to presence of compressively strained silicon germanium layer. This works reports the design, modeling and simulation of NMOS and PMOS transistors with a tensile strained Si channel layer and compressively strained SiGe channel layer for a 65 nm logic technology node. Since most of the recent work on development of strained Si/SiGe has been experimental in nature, developments of compact models are necessary to predict the device behavior. A unified modeling approach consisting of different physics-based models has been formulated in this work and their ability to predict the device behavior has been investigated. In addition to this, quantum mechanical simulations were performed in order to investigate and model the device behavior. High p/n-channel drive currents of 0.43 and 0.98 mA/Gm, respectively, are reported in this work. However with improved performance, ~ 10% electrostatic degradation was observed in PMOS due to buried channel device

    Study of Novel Power Semiconductor Devices for Performance and Reliability.

    Get PDF
    Power Semiconductor Devices are crucial components in present day power electronic systems. The performance and efficiency of the devices have a direct correlation with the power system efficiency. This dissertation will examine some of the components that are commonly used in a power system, with emphasis on their performance characteristics and reliability. In recent times, there has a proliferation of charge balance devices in high voltage discrete power devices. We examine the same charge balance concept in a fast recovery diode and a MOSFET. This is crucial in the extending system performance at compact dimensions. At smaller device and system sizes, the performance trade-off between the ON and OFF states becomes all the more critical. The focus on reducing the switching losses while maintaining system reliability increases. In a conventional planar technology, the technology places a limit on the switching performance owing to the larger die sizes. Using a charge balance structure helps achieve the improved trade-off, while working towards ultimately improving system reliability, size and cost. Chapter 1 introduces the basic power system based on an inductive switching circuit, and the various components that determine its efficiency. Chapter 2 presents a novel Trench Fast Recovery Diode (FRD) structure with injection control is proposed in this dissertation. The proposed structure achieves improved carrier profile without the need for excess lifetime control. This substantially improves the device performance, especially at extreme temperatures (-40oC to 175oC). The device maintains low leakage at high temperatures, and it\u27s Qrr and Irm do not degrade as is the usual case in heavily electron radiated devices. A 1600 diode using this structure has been developed, with a low forward turn-on voltage and good reverse recovery properties. The experimental results show that the structure maintains its performance at high temperatures. In chapter 3, we develop a termination scheme for the previously mentioned diode. A major limitation on the performance of high voltage power semiconductor is the edge termination of the device. It is critical to maintain the breakdown voltage of the device without compromising the reliability of the device by controlling the surface electric field. A good termination structure is critical to the reliability of the power semiconductor device. The proposed termination uses a novel trench MOS with buried guard ring structure to completely eliminate high surface electric field in the silicon region of the termination. The termination scheme was applied towards a 1350 V fast recovery diode, and showed excellent results. It achieved 98% of parallel plane breakdown voltage, with low leakage and no shifts after High Temperature Reverse Bias testing due to mobile ion contamination from packaging mold compound. In chapter 4, we also investigate the device physics behind a superjunction MOSFET structure for improved robustness. The biggest issue with a completely charge balanced MOSFET is decreased robustness in an Unclamped Inductive Switching (UIS) Circuit. The equally charged P and N pillars result in a flat electric field profile, with the peak carrier density closer to the P-N junction at the surface. This results in an almost negligible positive dynamic Rds-on effect in the MOSFET. By changing the charge profile of the P-column, either by increasing it completely or by implementing a graded profile with the heavier P on top, we can change the field profile and shift the carrier density deeper into silicon, increasing the positive dynamic Rds-on effect. Simulation and experimental results are presented to support the theory and understanding. Chapter 5 summarizes all the theories presented and the contributions made by them in the field. It also seeks to highlight future work to be done in these areas

    Development of a fully-depleted thin-body FinFET process

    Get PDF
    The goal of this work is to develop the processes needed for the demonstration of a fully-depleted (FD) thin-body fin field effect transistor (FinFET). Recognized by the 2003 International Technology Roadmap for Semiconductors as an emerging non-classical CMOS technology, FinFETs exhibit high drive current, reduced short-channel effects, an extreme scalability to deep submicron regimes. The approach used in this study will build on previous FinFET research, along with new concepts and technologies. The critical aspects of this research are: (1) thin body creation using spacer etchmasks and oxidation/etchback schemes, (2) use of an oxynitride gate dielectric, (3) silicon crystal orientation effect evaluation, and (4) creation of fully-depleted FinFET devices of submicron gate length on Silicon-on-Insulator (SOI) substrates. The developed process yielded functional FinFETs of both thin body and wide body variety. Electrical tests were employed to describe device behaviour, including their subthreshold characteristics, standard operation, effects of gate misalignment on device performance, and impact of crystal orientation on device drive current. The process is shown to have potential for deep submicron regimes of fin width and gate length, and provides a good foundation for further research of FinFETs and similar technologies at RIT

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Strain Engineering for Enhanced P-channel Field Effect Transistor Performance

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Simulation of FinFET Structures

    Get PDF
    The intensive downscaling of MOS transistors has been the major driving force behind the aggressive increases in transistor density and performance, leading to more chip functionality at higher speeds. While on the other side the reduction in MOSFET dimensions leads to the close proximity between source and drain, which in turn reduces the ability of the gate electrode to control the potential distribution and current flow in the channel region and also results in some undesirable effects called the short-channel effects. These limitations associated with downscaling of MOSFET device geometries have lead device designers and researchers to number of innovative techniques which include the use of different device structures, different channel materials, different gate-oxide materials, different processes such as shallow trench isolation, source/drain silicidation, lightly doped extensions etc. to enable controlled device scaling to smaller dimensions. A lot of research and development works have been done in these and related fields and more remains to be carried out in order to exploit these devices for the wider applications
    corecore