37,649 research outputs found

    Evaluation, energy optimization, and spectrum analysis of an artificial noise technique to improve CWSN security

    Get PDF
    This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    A survey on MAC-based physical layer security over wireless sensor network

    Get PDF
    Physical layer security for wireless sensor networks (WSNs) is a laborious and highly critical issue in the world. Wireless sensor networks have great importance in civil and military fields or applications. Security of data/information through wireless medium remains a challenge. The data that we transmit wirelessly has increased the speed of transmission rate. In physical layer security, the data transfer between source and destination is not confidential, and thus the user has privacy issues, which is why improving the security of wireless sensor networks is a prime concern. The loss of physical security causes a great threat to a network. We have various techniques to resolve these issues, such as interference, noise, fading in the communications, etc. In this paper we have surveyed the different parameters of a security design model to highlight the vulnerabilities. Further we have discussed the various attacks on different layers of the TCP/IP model along with their mitigation techniques. We also elaborated on the applications of WSNs in healthcare, military information integration, oil and gas. Finally, we have proposed a solution to enhance the security of WSNs by adopting the alpha method and handshake mechanism with encryption and decryption

    A Novel Physical Layer Secure Key Generation and Refreshment Scheme for Wireless Sensor Networks

    Get PDF
    Physical Layer Secure Key Generation (PL-SKG) schemes have received a lot of attention from the wireless security community in recent years because of the potential benefits that they could bring to the security landscape. These schemes aim to strengthen current security protocols by reducing the amount of key material that devices need for deployment. They do this by harnessing the common source of randomness provided by the wireless channel that the physical layer is communicating over. This is of particular importance in Wireless Sensor Networks (WSNs) where resources are particularly scarce and where issues such as key revocation and recovery make the design of efficient key management schemes extremely difficult. This paper discusses the issues and challenges encountered in the design and implementation of PL-SKG schemes on off-the-shelf wireless sensor networks. It then proposes a novel key generation scheme that takes advantage of both the power and simplicity of classic error correcting codes and also the diversity of frequency channels available on 802.15.4 compliant nodes to generate keys from received signal strength (RSS) readings. This paper shows that our key generation and refreshment scheme can achieve a near 100% key reconciliation rate whilst also providing perfect forward and backward security

    Physical layer security and energy efficiency over different error correcting codes in wireless sensor networks

    Get PDF
    Despite the rapid growth in the market demanding for wireless sensor networks (WSNs), they are far from being secured or efficient. WSNs are vulnerable to malicious attacks and utilize too much power. At the same time, there is a significant increment of the security threats due to the growth of the several applications that employ wireless sensor networks. Therefore, introducing physical layer security is considered to be a promising solution to mitigate the threats. This paper evaluates popular coding techniques like Reed solomon (RS) techniques and scrambled error correcting codes specifically in terms of security gap. The difference between the signal to nose ratio (SNR) of the eavesdropper and the legitimate receiver nodes is defined as the security gap. We investigate the security gap, energy efficiency, and bit error rate between RS and scrambled t-error correcting codes for wireless sensor networks. Lastly, energy efficiency in RS and Bose-Chaudhuri-Hocquenghem (BCH) is also studied. The results of the simulation emphasize that RS technique achieves similar security gap as scrambled error correcting codes. However, the analysis concludes that the computational complexities of the RS is less compared to the scrambled error correcting codes. We also found that BCH code is more energy-efficient than RS

    Development of an Encrypted Wireless System for Body Sensor Network Applications

    Get PDF
    Wireless body area networks (WBAN), also called wireless body sensor networks (WBSN), consist of a collection of wireless sensor nodes used to monitor and assess various human physiological conditions, which can then be used by healthcare professionals to help them make important healthcare decisions. They can be used to prevent disease, help diagnosis a disease, or manage the symptoms of a disease. An extremely important aspect of WBAN is security to protect a patient\u27s healthcare information, as a hacker could potentially cause fatal harm. Current security measures are implemented in software at the MAC layer and higher, not in the physical layer. Previous research demonstrated a chaotic encryption cipher to add a layer of security in the physical layer. This cipher exploits different properties of the Lorenz chaotic system to encrypt and decrypt digital data. Decryption involved synchronizing two chaotic signals to recover original data by sharing a state between the transmitter and receiver. In this thesis, we further develop the encryption system by implementing wireless capabilities. We use two approaches: the first by using commercially available wireless microcontrollers that communicate using Bluetooth Low Energy, and the second by the design and fabrication of a dual-band low noise amplifier (LNA) that can be used in a receiver for WBANs collecting data from implantable and on-the-body sensors. For the first approach, a custom Bluetooth Low Energy profile was created for streaming the analog encrypted signal, and signal processing was done at the receiver side. For the second approach, the LNA operates at the Medical Implant Communication System (MICS) band and the 915 MHz Industrial, Scientific, and Medical (ISM) band simultaneously through dual-band input and output matching networks

    Data analytics methods for attack detection and localization in wireless networks

    Get PDF
    Wireless ad hoc network operates without any fixed infrastructure and centralized administration. It is a group of wirelessly connected nodes having the capability to work as host and router. Due to its features of open communication medium, dynamic changing topology, and cooperative algorithm, security is the primary concern when designing wireless networks. Compared to the traditional wired network, a clean division of layers may be sacrificed for performance in wireless ad hoc networks. As a result, they are vulnerable to various types of attacks at different layers of the protocol stack. In this paper, I present real-time series data analysis solutions to detect various attacks including in- band wormholes attack in the network layer, various MAC layer misbehaviors, and jamming attack in the physical layer. And, I also investigate the problem of node localization in wireless and sensor networks, where a total of n anchor nodes are used to determine the locations of other nodes based on the received signal strengths. A range-based machine learning algorithm is developed to tackle the challenges --Abstract, page iii

    Service-oriented wireless sensor networks and an energy-aware mesh routing algorithm

    Full text link
    Service-oriented wireless sensor networks (WSNs) are being paid more and more attention because service computing can hide complexity of WSNs and enables simple and transparent access to individual sensor nodes. Existing WSNs mainly use IEEE 802.15.4 as their communication specification, however, this protocol suite cannot support IP-based routing and service-oriented access because it only specifies a set of physical- and MAC-layer protocols. For inosculating WSNs with IP networks, IEEE proposed a 6LoWPAN (IPv6 over LoW Power wireless Area Networks) as the adaptation layer between IP and MAC layers. However, it is still a challenging task how to discover and manage sensor resources, guarantee the security of WSNs and route messages over resource-restricted sensor nodes. This paper is set to address such three key issues. Firstly, we propose a service-oriented WSN architectural model based on 6LoWPAN and design a lightweight service middleware SOWAM (service-oriented WSN architecture middleware), where each sensor node provides a collection of services and is managed by our SOWAM. Secondly, we develop a security mechanism for the authentication and secure connection among users and sensor nodes. Finally, we propose an energyaware mesh routing protocol (EAMR) for message transmission in a WSN with multiple mobile sinks, aiming at prolonging the lifetime of WSNs as long as possible. In our EAMR, sensor nodes with the residual energy lower than a threshold do not forward messages for other nodes until the threshold is leveled down. As a result, the energy consumption is evened over sensor nodes significantly. The experimental results demonstrate the feasibility of our service-oriented approach and lightweight middleware SOWAM, as well as the effectiveness of our routing algorithm EAMR.<br /

    Secure and Reliable Routing Protocol for Transmission Data in Wireless Sensor Mesh Networks

    Get PDF
    Abstract Sensor nodes collect data from the physical world then exchange it until it reaches the intended destination. This information can be sensitive, such as battlefield surveillance. Therefore, providing secure and continuous data transmissions among sensor nodes in wireless network environments is crucial. Wireless sensor networks (WSN) have limited resources, limited computation capabilities, and the exchange of data through the air and deployment in accessible areas makes the energy, security, and routing major concerns in WSN. In this research we are looking at security issues for the above reasons. WSN is susceptible to malicious activities such as hacking and physical attacks. In general, security threats are classified depending on the layers. Physical, Transport, Network, Data link, and the Application layer. Sensor nodes can be placed in an unfriendly environments and it has lower power energy, computation and bandwidth, are exposed to a failure, and the WSN topology dynamically unstable. The recent wireless sensor protocols are intended for data communication transmission energy consumption. Therefore, many do not consider the security in WSN as much as they should and it might be vulnerable to attacks. Standard crypto systems methods aim to protect the authentication and integrity of data packets during the transmission stage between senders and receivers. In this dissertation we present Adel which is a novel routing protocol for exchanging data through wireless sensor mesh networks using Ant Colony Optimization (ACO) algorithm. Adel enhances security level during data transmission between sender party and receiver party in wireless network environment. Once the sensor nodes are deployed in a network, they need to inform their location and their data related to the security for the further communication in the network. For that purpose, ii an efficient mechanism is implemented in order to perform better communication among sensor nodes. Adel generates dynamic routing table using ACO algorithm with all the necessary information from network nodes after being deployed. Adel works with minimum routing restrictions and exploits the advantages of the three multicast routing styles, unicast, path, and mesh based. Since it takes a routing decision with a minimum number of nodes using the shortest path between the sender and the receiver nodes, Adel is applicable in static networks. Four essential performance metrics in mesh networks, network security analysis, network latency time, network packets drop, network delivery ratio, and network throughput are evaluated. Adel routing protocol has met the most important security requirements such as authorization, authentication, confidentiality, and integrity. It also grantees the absence of the cycle path problem in the network.This research reports the implementation and the performance of the proposed protocol using network simulator NS-2. The seven main parameters are considered for evaluation all experiments are security trust, packets drop, energy consumption, throughput, end to end delay and packet delivery ratio. The results show that the proposed system can significantly enhance the network security and connectivity level compared to other routing protocols. Yet, as expected, it did not do so well in energy consumption since our main goal was to provide higher level of security and connectivit

    Denial of service mitigation approach for IPv6-enabled smart object networks

    Full text link
    Denial of service (DoS) attacks can be defined as any third-party action aiming to reduce or eliminate a network's capability to perform its expected functions. Although there are several standard techniques in traditional computing that mitigate the impact of some of the most common DoS attacks, this still remains a very important open problem to the network security community. DoS attacks are even more troublesome in smart object networks because of two main reasons. First, these devices cannot support the computational overhead required to implement many of the typical counterattack strategies. Second, low traffic rates are enough to drain sensors' battery energy making the network inoperable in short times. To realize the Internet of Things vision, it is necessary to integrate the smart objects into the Internet. This integration is considered an exceptional opportunity for Internet growth but, also, a security threat, because more attacks, including DoS, can be conducted. For these reasons, the prevention of DoS attacks is considered a hot topic in the wireless sensor networks scientific community. In this paper, an approach based on 6LowPAN neighbor discovery protocol is proposed to mitigate DoS attacks initiated from the Internet, without adding additional overhead on the 6LoWPAN sensor devices.This work has been partially supported by the Instituto de Telecomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, and by National Funding from the FCT - Fundacao para a Ciencia e Tecnologia through the Pest-OE/EEI/LA0008/2011.Oliveira, LML.; Rodrigues, JJPC.; De Sousa, AF.; Lloret, J. (2013). Denial of service mitigation approach for IPv6-enabled smart object networks. Concurrency and Computation: Practice and Experience. 25(1):129-142. doi:10.1002/cpe.2850S129142251Gershenfeld, N., Krikorian, R., & Cohen, D. (2004). The Internet of Things. Scientific American, 291(4), 76-81. doi:10.1038/scientificamerican1004-76Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393-422. doi:10.1016/s1389-1286(01)00302-4Karl, H., & Willig, A. (2005). Protocols and Architectures for Wireless Sensor Networks. doi:10.1002/0470095121IEEE Std 802.15.4-2006 Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specificationsfor low-rate wireless personal area networks (LR-WPANs) 2006ZigBee Alliance ZigBee Specification 2007WirelessHARThomepage 2012 http://www.hartcomm.org/Hui, J. W., & Culler, D. E. (2008). Extending IP to Low-Power, Wireless Personal Area Networks. IEEE Internet Computing, 12(4), 37-45. doi:10.1109/mic.2008.79Kushalnagar N Montenegro G Schumacher C IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals 2007Montenegro G Kushalnagar N Hui J Culler D Transmission of IPv6 Packets over IEEE 802.15.4 Networks 2007Shelby Z Thubert P Hui J Chakrabarti S Bormann C Nordmark E 6LoWPAN Neighbor Discovery 2011Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint Forensics-Scheduling Strategy for Delay-Sensitive Multimedia Applications over Heterogeneous Networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358-1367. doi:10.1109/jsac.2011.110803Roman, R., & Lopez, J. (2009). Integrating wireless sensor networks and the internet: a security analysis. Internet Research, 19(2), 246-259. doi:10.1108/10662240910952373Wang, Y., Attebury, G., & Ramamurthy, B. (2006). A survey of security issues in wireless sensor networks. IEEE Communications Surveys & Tutorials, 8(2), 2-23. doi:10.1109/comst.2006.315852Xiaojiang Du, & Hsiao-Hwa Chen. (2008). Security in wireless sensor networks. IEEE Wireless Communications, 15(4), 60-66. doi:10.1109/mwc.2008.4599222Pelechrinis, K., Iliofotou, M., & Krishnamurthy, S. V. (2011). Denial of Service Attacks in Wireless Networks: The Case of Jammers. IEEE Communications Surveys & Tutorials, 13(2), 245-257. doi:10.1109/surv.2011.041110.00022Zhou, L., Wang, X., Tu, W., Muntean, G., & Geller, B. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28(3), 409-419. doi:10.1109/jsac.2010.100412Lin, K., Lai, C.-F., Liu, X., & Guan, X. (2010). Energy Efficiency Routing with Node Compromised Resistance in Wireless Sensor Networks. Mobile Networks and Applications, 17(1), 75-89. doi:10.1007/s11036-010-0287-xLi, H., Lin, K., & Li, K. (2011). Energy-efficient and high-accuracy secure data aggregation in wireless sensor networks. Computer Communications, 34(4), 591-597. doi:10.1016/j.comcom.2010.02.026Oliveira, L. M. L., de Sousa, A. F., & Rodrigues, J. J. P. C. (2011). Routing and mobility approaches in IPv6 over LoWPAN mesh networks. International Journal of Communication Systems, 24(11), 1445-1466. doi:10.1002/dac.1228Narten T Nordmark E Simpson W Soliman H Neighbor Discovery for IP version 6 (IPv6) 2007Singh H Beebee W Nordmark E IPv6 Subnet Model: The Relationship between Links and Subnet Prefixes 2010Roman, R., Lopez, J., & Gritzalis, S. (2008). Situation awareness mechanisms for wireless sensor networks. IEEE Communications Magazine, 46(4), 102-107. doi:10.1109/mcom.2008.4481348Sakarindr, P., & Ansari, N. (2007). Security services in group communications over wireless infrastructure, mobile ad hoc, and wireless sensor networks. IEEE Wireless Communications, 14(5), 8-20. doi:10.1109/mwc.2007.4396938Tsao T Alexander R Dohler M Daza V Lozano A A Security Framework for Routing over Low Power and Lossy Networks 2009Karlof C Wagner D Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures First IEEE International Workshop on Sensor Network Protocols and Applications 2003 113 127 10.1109/SNPA.2003.1203362Hui J Thubert P Compression Format for IPv6 Datagrams in 6LoWPAN Networks 2009Elaine Shi, & Perrig, A. (2004). Designing Secure Sensor Networks. IEEE Wireless Communications, 11(6), 38-43. doi:10.1109/mwc.2004.1368895Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325-349. doi:10.1016/j.adhoc.2003.09.01
    corecore