227 research outputs found

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    A MAC Throughput in the Wireless LAN

    Get PDF

    Throughput and Range Performance Investigation for IEEE 802.11a, 802.11n and 802.11ac Technologies in an On-Campus Heterogeneous Network Environment

    Get PDF
    This paper presents an analysis and measurement results for an experimental study on throughput, range and efficiency performance of IEEE 802.11a, 802.11n and 802.11ac standards in an indoor environment on a typical University Campus. The investigation considers a number of key system features including PHY layers mainly, Multiple Input Multiple Output (MIMO), Multi-User Multiple Input Multiple Output (MU-MIMO), Channel Bonding and Short-Guard Interval (SGI) in the heterogeneous wireless network. The experiment is carried out for the IEEE 802.11ac standard along with the legacy protocols 802.11a/n in a heterogeneous environment which is typically deployed on Campus. The results compare the maximum throughput of IEEE 802.11 standard amendments, in terms of theoretical and experimental throughput over TCP and UDP protocols for different set of parameters and features to check their efficiency and range. To achieve this desired goal, different tests are proposed. The result of these tests will help to determine the capability of each protocol and their efficiency in a practical heterogeneous on-campus environment

    Evaluation of IEEE 802.11 coexistence in WLAN deployments

    Get PDF
    This is a pre-print of an article published in Wireless Networks. The final authenticated version is available online at: https://doi.org/10.1007/s11276-017-1540-z.Wi-Fi has become a successful technology since the publication of its first WLAN standard due to continuous advances and updates while remaining always backwards compatible. Backwards compatibility among subsequent standards is an important feature in order to take advantage of previous equipment when publishing a new amendment. At present, IEEE 802.11b support is still mandatory to obtain the Wi-Fi certification. However, there are several harmful effects of allowing old legacy IEEE 802.11b transmissions in modern WLAN deployments. Lower throughput per device is obtained at slow rates, but also the effect known as performance anomaly, which nearly leads to starvation of fast stations, has to be taken into account. Finally, backwards compatibility mechanisms pose an important penalty in throughput performance for newer specifications. This paper presents a thorough analysis of the current state of IEEE 802.11, comparing coverage range and throughput performance among subsequent amendments, and focusing on the drawbacks and benefits of including protection mechanisms.Peer ReviewedPostprint (author's final draft

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft

    Comparison of theoretical and practical performances with 802.11N and 802.11Ac wireless networking

    Get PDF
    This work explores the theoretical and practical performances of the two most recent IEEE standards, 802.11n and 802.11ac. Experiments were conducted to measure data rates to characterize performance effects of distance and interference between different channels. We conclude that the majority of test cases show 802.11ac achieved higher data rates than its predecessor, as expected. However, performance of 802.11ac decreased at a significantly faster rate with increasing distance from client to AP when compared to the decreasing performance experienced with 802.11n. Furthermore, 802.11n consistently achieved real data rates much closer to the theoretical data rate than did 802.11ac
    • …
    corecore