285 research outputs found

    Physical Layer Algorithm and Hardware Verification of MIMO Relays Using Cooperative Partial Detection

    Get PDF
    Cooperative communication with multi-antenna relays can significantly increase the reliability and speed. However, cooperative MIMO detection would impose considerable complexity overhead onto the relay if a full detect-and-forward (FDF) strategy is employed. In order to address this challenge, we propose a novel cooperative partial detection (CPD) strategy to partition the detection task between the relay and the destination. CPD utilizes the inherent structure of the tree-based sphere detectors, and modifies the tree traversal so that instead of visiting all the levels of the tree, only a subset of the levels, thus a subset of the transmitted streams, are visited. Based on this methodology, the destination combines the source signal and the partial relay signal to perform the detection step. We show, in both simulation and hardware verification on the WARP platform, that using the CPD approach, the relay can avoid the considerable overhead of MIMO detection while helping the source-destination link to improve its performance.XilinxAzimuth SystemsNational Science Foundatio

    Cooperative Partial Detection Using MIMO Relays

    Get PDF
    Using multiple-input multiple-output (MIMO) relays in cooperative communication improves the data rate and reliability of the communication. The MIMO transmission, however, requires considerable resources for the detection in the relay. In particular, if a full detect-and-forward (FDF) strategy is employed, the relay needs to spend considerable resources to perform the full MIMO detection. We propose a novel cooperative partial detection (CPD) strategy to partition the detection task between the relay and the destination. CPD modifies the tree traversal of the tree-based sphere detectors in a way where there is no need to visit all the levels of the tree and only a subset of the levels; thus, a subset of the transmitted streams are visited. The destination, then, combines the source signal and the partial relay signal to perform the final detection step and recover the transmitted vector. We study and compare the performance and complexity of FDF and CPD and show that by using the CPD approach, the relay can avoid the considerable overhead of MIMO detection while helping the source-destination link to improve its performance. More specifically, in the case of a 4X4 system, the relay complexity can be reduced by up to 80% of the conventional relaying scheme

    Cooperative Partial Detection for MIMO Relay Networks

    Get PDF
    This paper was submitted by the author prior to final official version. For official version please see http://hdl.handle.net/1911/64372Cooperative communication has recently re-emerged as a possible paradigm shift to realize the promises of the ever increasing wireless communication market; how- ever, there have been few, if any, studies to translate theoretical results into feasi- ble schemes with their particular practical challenges. The multiple-input multiple- output (MIMO) technique is another method that has been recently employed in different standards and protocols, often as an optional scenario, to further improve the reliability and data rate of different wireless communication applications. In this work, we look into possible methods and algorithms for combining these two tech- niques to take advantage of the benefits of both. In this thesis, we will consider methods that consider the limitations of practical solutions, which, to the best of our knowledge, are the first time to be considered in this context. We will present complexity reduction techniques for MIMO systems in cooperative systems. Furthermore, we will present architectures for flexible and configurable MIMO detectors. These architectures could support a range of data rates, modulation orders and numbers of antennas, and therefore, are crucial in the different nodes of cooperative systems. The breadth-first search employed in our realization presents a large opportunity to exploit the parallelism of the FPGA in order to achieve high data rates. Algorithmic modifications to address potential sequential bottlenecks in the traditional bread-first search-based SD are highlighted in the thesis. We will present a novel Cooperative Partial Detection (CPD) approach in MIMO relay channels, where instead of applying the conventional full detection in the relay, the relay performs a partial detection and forwards the detected parts of the message to the destination. We will demonstrate how this approach leads to controlling the complexity in the relay and helping it choose how much it is willing to cooperate based on its available resources. We will discuss the complexity implications of this method, and more importantly, present hardware verification and over-the-air experimentation of CPD using the Wireless Open-access Research Platform (WARP).NSF grants EIA-0321266, CCF-0541363, CNS-0551692, CNS-0619767, EECS-0925942, and CNS-0923479, Nokia, Xilinx, Nokia Siemens Networks, Texas Instruments, and Azimuth Systems

    Wireless Device Authentication Techniques Using Physical-Layer Device Fingerprint

    Get PDF
    Due to the open nature of the radio signal propagation medium, wireless communication is inherently more vulnerable to various attacks than wired communication. Consequently, communication security is always one of the critical concerns in wireless networks. Given that the sophisticated adversaries may cover up their malicious behaviors through impersonation of legitimate devices, reliable wireless authentication is becoming indispensable to prevent such impersonation-based attacks through verification of the claimed identities of wireless devices. Conventional wireless authentication is achieved above the physical layer using upper-layer identities and key-based cryptography. As a result, user authenticity can even be validated for the malicious attackers using compromised security key. Recently, many studies have proven that wireless devices can be authenticated by exploiting unique physical-layer characteristics. Compared to the key-based approach, the possession of such physical-layer characteristics is directly associated with the transceiver\u27s unique radio-frequency hardware and corresponding communication environment, which are extremely difficult to forge in practice. However, the reliability of physical-layer authentication is not always high enough. Due to the popularity of cooperative communications, effective implementation of physical-layer authentication in wireless relay systems is urgently needed. On the other hand, the integration with existing upper-layer authentication protocols still has many challenges, e.g., end-to-end authentication. This dissertation is motivated to develop novel physical-layer authentication techniques in addressing the aforementioned challenges. In achieving enhanced wireless authentication, we first specifically identify the technique challenges in authenticating cooperative amplify-and-forward (AF) relay. Since AF relay only works at the physical layer, all of the existing upper-layer authentication protocols are ineffective in identifying AF relay nodes. To solve this problem, a novel device fingerprint of AF relay consisting of wireless channel gains and in-phase and quadrature imbalances (IQI) is proposed. Using this device fingerprint, satisfactory authentication accuracy is achieved when the signal-to-noise ratio is high enough. Besides, the optimal AF relay identification system is studied to maximize the performance of identifying multiple AF relays in the low signal-to-noise regime and small IQI. The optimal signals for quadrature amplitude modulation and phase shift keying modulations are derived to defend against the repeated access attempts made by some attackers with specific IQIs. Exploring effective authentication enhancement technique is another key objective of this dissertation. Due to the fast variation of channel-based fingerprints as well as the limited range of device-specific fingerprints, the performance of physical-layer authentication is not always reliable. In light of this, the physical-layer authentication is enhanced in two aspects. On the one hand, the device fingerprinting can be strengthened by considering multiple characteristics. The proper characteristics selection strategy, measurement method and optimal weighted combination of the selected characteristics are investigated. On the other hand, the accuracy of fingerprint estimation and differentiation can be improved by exploiting diversity techniques. To be specific, cooperative diversity in the form of involving multiple collaborative receivers is used in differentiating both frequency-dependent and frequency-independent device fingerprints. As a typical combining method of the space diversity techniques, the maximal-ratio combining is also applied in the receiver side to combat the channel degeneration effect and increase the fingerprint-to-noise ratio. Given the inherent weaknesses of the widely utilized upper-layer authentication protocols, it is straightforward to consider physical-layer authentication as an effective complement to reinforce existing authentication schemes. To this end, a cross-layer authentication is designed to seamlessly integrate the physical-layer authentication with existing infrastructures and protocols. The specific problems such as physical-layer key generation as well as the end-to-end authentication in networks are investigated. In addition, the authentication complexity reduction is also studied. Through prediction, pre-sharing and reusing the physical-layer information, the authentication processing time can be significantly shortened

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Physical layer authentication for wireless communications

    Get PDF
    指導教員:姜 暁
    corecore