147 research outputs found

    A Reuse-based framework for the design of analog and mixed-signal ICs

    Get PDF
    Despite the spectacular breakthroughs of the semiconductor industry, the ability to design integrated circuits (ICs) under stringent time-to-market (TTM) requirements is lagging behind integration capacity, so far keeping pace with still valid Moore's Law. The resulting gap is threatening with slowing down such a phenomenal growth. The design community believes that it is only by means of powerful CAD tools and design methodologies -and, possibly, a design paradigm shift-that this design gap can be bridged. In this sense, reuse-based design is seen as a promising solution, and concepts such as IP Block, Virtual Component, and Design Reuse have become commonplace thanks to the significant advances in the digital arena. Unfortunately, the very nature of analog and mixed-signal (AMS) design has hindered a similar level of consensus and development. This paper presents a framework for the reuse-based design of AMS circuits. The framework is founded on three key elements: (1) a CAD-supported hierarchical design flow that facilitates the incorporation of AMS reusable blocks, reduces the overall design time, and expedites the management of increasing AMS design complexity; (2) a complete, clear definition of the AMS reusable block, structured into three separate facets or views: the behavioral, structural, and layout facets, the two first for top-down electrical synthesis and bottom-up verification, the latter used during bottom-up physical synthesis; (3) the design for reusability set of tools, methods, and guidelines that, relying on intensive parameterization as well as on design knowledge capture and encapsulation, allows to produce fully reusable AMS blocks. A case study and a functional silicon prototype demonstrate the validity of the paper's proposals.Ministerio de Educación y Ciencia TEC2004-0175

    A Novel Physical Unclonable Function (PUF) Featuring 0.113 FJ/B for IOT Devices

    Get PDF
    A physically unclonable function (PUF) is useful for authentication purposes and is a function created for its inherent uniqueness and inability of adversaries to duplicate it. In this thesis, a PUF is designed, which is a combination of both digital and analog circuits. This PUF could be designed partially based on a semi-automated approach using custom-built P-cells. The PUF is implemented using novel digital circuits, which have been designed using basic digital gates with a minimal number of transistors. The proposed PUF is developed by the introduction of a layer of multiplexers, which is triggered by a novel SR-latch based model for driving the selection lines. For a higher bit stability, the SR latch is combined with four-way asynchronous circuits, which are a class of coincident flip-flops. The resulted PUF consumes very little power and is suitable for sensors and low power applications. The proposed design was implemented in using the Cadence virtuoso IC 5.1.4 and based on the 180nm TSMC transistor models. The energy consumption and area of the proposed PUF is shown to be equal to 0.1132 fJ/bit and 8.03, which is considerably lower than the state of the arts. The uniqueness and reliability of the proposed PUF are estimated to be 48.66% and 99.33%

    Physical Computing for Materials Acceleration Platforms

    Full text link
    A ''technology lottery'' describes a research idea or technology succeeding over others because it is suited to the available software and hardware, not necessarily because it is superior to alternative directions--examples abound, from the synergies of deep learning and GPUs to the disconnect of urban design and autonomous vehicles. The nascent field of Self-Driving Laboratories (SDL), particularly those implemented as Materials Acceleration Platforms (MAPs), is at risk of an analogous pitfall: the next logical step for building MAPs is to take existing lab equipment and workflows and mix in some AI and automation. In this whitepaper, we argue that the same simulation and AI tools that will accelerate the search for new materials, as part of the MAPs research program, also make possible the design of fundamentally new computing mediums. We need not be constrained by existing biases in science, mechatronics, and general-purpose computing, but rather we can pursue new vectors of engineering physics with advances in cyber-physical learning and closed-loop, self-optimizing systems. Here we outline a simulation-based MAP program to design computers that use physics itself to solve optimization problems. Such systems mitigate the hardware-software-substrate-user information losses present in every other class of MAPs and they perfect alignment between computing problems and computing mediums eliminating any technology lottery. We offer concrete steps toward early ''Physical Computing (PC) -MAP'' advances and the longer term cyber-physical R&D which we expect to introduce a new era of innovative collaboration between materials researchers and computer scientists

    大規模システムLSI設計のための統一的ハードウェア・ソフトウェア協調検証手法

    Get PDF
    Currently, the complexity of embedded LSI system is growing faster than the productivity of system design. This trend results in a design productivity gap, particularly in tight development time. Since the verification task takes bigger part of development task, it becomes a major challenge in LSI system design. In order to guarantee system reliability and quality of results (QoR), verifying large coverage of system functionality requires huge amount of relevant test cases and various scenario of evaluations. To overcome these problems, verification methodology is evolving toward supporting higher level of design abstraction by employing HW-SW co-verification. In this study, we present a novel approach for verification LSI circuit which is called as unified HW/SW co-verification framework. The study aims to improve design efficiency while maintains implementation consistency in the point of view of system-level performance. The proposed data-driven simulation and flexible interface of HW and SW design become the backbone of verification framework. In order to avoid time consuming, prone error, and iterative design spin-off in a large team, the proposed framework has to support multiple design abstractions. Hence, it can close the loop of design, exploration, optimization, and testing. Furthermore, the proposed methodology is also able to co-operate with system-level simulation in high-level abstraction, which is easy to extend for various applications and enables fast-turn around design modification. These contributions are discussed in chapter 3. In order to show the effectiveness and the use-cases of the proposed verification framework, the evaluation and metrics assessments of Very High Throughput wireless LAN system design are carried out. Two application examples are provided. The first case in chapter 4 is intended for fast verification and design exploration of large circuit. The Maximum Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT). The second case, as presented in chapter 5, is the evaluation for system-level simulation. The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experimental results show that the proposed verification approach gives significant improvements of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed framework is also able to support various schemes of system level evaluations and cross-layer evaluation of wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第328号 学位授与年月日:平成29年6月30日1 Introduction|2 Design and Verification in LSI System Design|3 Unified HW/SW Co-verification Methodology|4 Fast Co-verification and Design Exploration in Complex Circuits|5 Unified System Level Simulator for Very High Throughput Wireless Systems|6 Conclusion and Future Work九州工業大学平成29年

    RFID Logic circuit with oxide TFTs modeled by genetic algorithms

    Get PDF
    Nos últimos anos, a necessidade por técnicas de identificação com velocidades de leitura superiores e maior flexibilidade relativamente à memória e programabilidade, levaram ao desenvolvimento de tecnologias de identificação de rádio frequência (RFID). Esta tecnologia já provou o seu valor no futuro da Internet das coisas (IoT), ao permitir a possibilidade de marcar qualquer tipo de produto facilmente e com baixo custo por etiqueta, enquanto possibilita a conexão deste tipo de etiquetas com smartphones para aumentar a ligação entre os dispositivos RFID e a vida quotidiana. Além disto, a introdução de transístores de filme fino (TFT) de óxidos amorfos em circuitos RFID, abre um novo mundo de aplicações, visto que este tipo de dispositivos permite o uso de substratos transparentes e/ou flexíveis, devido à possibilidade de usar baixas temperaturas durante o processo de fabrico para este tipo de transístores. Neste trabalho, foi usado o Modelo a-Si Nível 61 com a ajuda de algoritmos genéticos para criar modelos de transístores de a-IGZO produzidos com um dielétrico de porta depositado por métodos de solução usando spin-coating. Com estes modelos, foi dimensionado um circuito digital de RFID, usando uma topologia em que o transístor de carga está em configuração de díodo, para ler uma memória ROM de 16-bit e posteriormente codificar o sinal através de uma codificação de Manchester com uma taxa de transferência de 14 kbit/s. Este tipo de circuitos utilizando substratos transparentes e/ou flexíveis pode possibilitar no futuro a criação de embalagens inteligentes para bens domésticos e a posterior integração numa configuração de frigoríficos inteligentes. Isto significa que poderá ser possível uma pessoa ser avisada quando é necessário comprar um produto ou quando ultrapassa o prazo de validade.In recent years, the need for identification techniques, with faster reading speed and more flexibility regarding memory and programmability, led to the development of Radio Frequency Identification technologies. This technology has already proven to be essential in the future of Internet-of-Things, by allowing the possibility of tagging any type of product easily and at low cost per tag, while also allowing the interface of these tags, with common smartphones to increase the connectivity of RFID devices in daily life. Furthermore, the introduction of amorphous IGZO thin film transistors in RFID circuits, opens a new world of applications since this type of devices allows the use of transparent and/or flexible substrates, due to the low temperatures required during the fabrication process. In this work, it was used the a-Si Level 61 TFT Model together with genetic algorithms, to model a-IGZO transistors produced, with a gate dielectric deposited by a solution method using spin coating. With these models, it was designed an RFID logic circuit, which employs diode connected structures, to read a 16-bit Read Only Memory and encode the signal using a Manchester encoding technique, with a data rate of 14 kbit/s. These types of circuits using transparent and/or flexible substrates could allow, in the future, the creation of smart packaging for regular house goods and integrate it in a smart fridge configuration. Meaning that, it could be possible to a person either to be advised when to buy a certain item or when it reaches the expiration date

    Constraint-driven RF test stimulus generation and built-in test

    Get PDF
    With the explosive growth in wireless applications, the last decade witnessed an ever-increasing test challenge for radio frequency (RF) circuits. While the design community has pushed the envelope far into the future, by expanding CMOS process to be used with high-frequency wireless devices, test methodology has not advanced at the same pace. Consequently, testing such devices has become a major bottleneck in high-volume production, further driven by the growing need for tighter quality control. RF devices undergo testing during the prototype phase and during high-volume manufacturing (HVM). The benchtop test equipment used throughout prototyping is very precise yet specialized for a subset of functionalities. HVM calls for a different kind of test paradigm that emphasizes throughput and sufficiency, during which the projected performance parameters are measured one by one for each device by automated test equipment (ATE) and compared against defined limits called specifications. The set of tests required for each product differs greatly in terms of the equipment required and the time taken to test individual devices. Together with signal integrity, precision, and repeatability concerns, the initial cost of RF ATE is prohibitively high. As more functionality and protocols are integrated into a single RF device, the required number of specifications to be tested also increases, adding to the overall cost of testing, both in terms of the initial and recurring operating costs. In addition to the cost problem, RF testing proposes another challenge when these components are integrated into package-level system solutions. In systems-on-packages (SOP), the test problems resulting from signal integrity, input/output bandwidth (IO), and limited controllability and observability have initiated a paradigm shift in high-speed analog testing, favoring alternative approaches such as built-in tests (BIT) where the test functionality is brought into the package. This scheme can make use of a low-cost external tester connected through a low-bandwidth link in order to perform demanding response evaluations, as well as make use of the analog-to-digital converters and the digital signal processors available in the package to facilitate testing. Although research on analog built-in test has demonstrated hardware solutions for single specifications, the paradigm shift calls for a rather general approach in which a single methodology can be applied across different devices, and multiple specifications can be verified through a single test hardware unit, minimizing the area overhead. Specification-based alternate test methodology provides a suitable and flexible platform for handling the challenges addressed above. In this thesis, a framework that integrates ATE and system constraints into test stimulus generation and test response extraction is presented for the efficient production testing of high-performance RF devices using specification-based alternate tests. The main components of the presented framework are as follows: Constraint-driven RF alternate test stimulus generation: An automated test stimulus generation algorithm for RF devices that are evaluated by a specification-based alternate test solution is developed. The high-level models of the test signal path define constraints in the search space of the optimized test stimulus. These models are generated in enough detail such that they inherently define limitations of the low-cost ATE and the I/O restrictions of the device under test (DUT), yet they are simple enough that the non-linear optimization problem can be solved empirically in a reasonable amount of time. Feature extractors for BIT: A methodology for the built-in testing of RF devices integrated into SOPs is developed using additional hardware components. These hardware components correlate the high-bandwidth test response to low bandwidth signatures while extracting the test-critical features of the DUT. Supervised learning is used to map these extracted features, which otherwise are too complicated to decipher by plain mathematical analysis, into the specifications under test. Defect-based alternate testing of RF circuits: A methodology for the efficient testing of RF devices with low-cost defect-based alternate tests is developed. The signature of the DUT is probabilistically compared with a class of defect-free device signatures to explore possible corners under acceptable levels of process parameter variations. Such a defect filter applies discrimination rules generated by a supervised classifier and eliminates the need for a library of possible catastrophic defects.Ph.D.Committee Chair: Chatterjee, Abhijit; Committee Member: Durgin, Greg; Committee Member: Keezer, David; Committee Member: Milor, Linda; Committee Member: Sitaraman, Sures

    Design of an Ultra-Low Power RTC for the IoT

    Get PDF
    The Internet of Things is growing at an exponential rate. This new perception of reality is being researched even further nowadays because society is starting to develop an interest on these technologies. Market potential is increasing even further, since the foreseeable implementations are diverse and still to be detected. The future applications for the IoT are enthusiastic and they will increase the overall quality of life of the citizens of the world. Developing a component that is crucial for the sustainability of this implementation is the task that truly motivates the intended work for this project. Designing the full-custom circuitry and physical layout of a Real Time Clock becomes a job that has a lot of minor details that need considerable attention. These technicalities truly tone the developers skill and knowledge of different design principles. Besides, developing the solution using subthreshold CMOS techniques will put emphasis on different technological procedures. Producing devices that are heavily dependent on PVT variations, operational frequency and power consumption define this new task, that needs a stable approach to all these diverse figure of merits, even though they are all interconnected. The study and understanding of these different approaches allows for a more complex in depth grasp of this recent intriguing proceedings

    Split and Shift Methodology: Overcoming Hardware Limitations on Cellular Processor Arrays for Image Processing

    Get PDF
    Na era multimedia, o procesado de imaxe converteuse nun elemento de singular importancia nos dispositivos electrónicos. Dende as comunicacións (p.e. telemedicina), a seguranza (p.e. recoñecemento retiniano) ou control de calidade e de procesos industriais (p.e. orientación de brazos articulados, detección de defectos do produto), pasando pola investigación (p.e. seguimento de partículas elementais) e diagnose médica (p.e. detección de células estrañas, identificaciónn de veas retinianas), hai un sinfín de aplicacións onde o tratamento e interpretación automáticas de imaxe e fundamental. O obxectivo último será o deseño de sistemas de visión con capacidade de decisión. As tendencias actuais requiren, ademais, a combinación destas capacidades en dispositivos pequenos e portátiles con resposta en tempo real. Isto propón novos desafíos tanto no deseño hardware como software para o procesado de imaxe, buscando novas estruturas ou arquitecturas coa menor area e consumo de enerxía posibles sen comprometer a funcionalidade e o rendemento

    REDUCING POWER DURING MANUFACTURING TEST USING DIFFERENT ARCHITECTURES

    Get PDF
    Power during manufacturing test can be several times higher than power consumption in functional mode. Excessive power during test can cause IR drop, over-heating, and early aging of the chips. In this dissertation, three different architectures have been introduced to reduce test power in general cases as well as in certain scenarios, including field test. In the first architecture, scan chains are divided into several segments. Every segment needs a control bit to enable capture in a segment when new faults are detectable on that segment for that pattern. Otherwise, the segment should be disabled to reduce capture power. We group the control bits together into one or more control chains. To address the extra pin(s) required to shift data into the control chain(s) and significant post processing in the first architecture, we explored a second architecture. The second architecture stitches the control bits into the chains they control as EECBs (embedded enable capture bits) in between the segments. This allows an ATPG software tool to automatically generate the appropriate EECB values for each pattern to maintain the fault coverage. This also works in the presence of an on-chip decompressor. The last architecture focuses primarily on the self-test of a device in a 3D stacked IC when an existing FPGA in the stack can be programmed as a tester. We show that the energy expended during test is significantly less than would be required using low power patterns fed by an on-chip decompressor for the same very short scan chains
    corecore