649 research outputs found

    Secrecy outage probability of a NOMA scheme and impact imperfect channel state information in underlay cooperative cognitive networks

    Get PDF
    Security performance and the impact of imperfect channel state information (CSI) in underlay cooperative cognitive networks (UCCN) is investigated in this paper. In the proposed scheme, relay R uses non-orthogonal multiple access (NOMA) technology to transfer messages e1, e2 from the source node S to User 1 (U-1) and User 2 (U-2), respectively. An eavesdropper (E) is also proposed to wiretap the messages of U-1 and U-2. The transmission's security performance in the proposed system was analyzed and performed over Rayleigh fading channels. Through numerical analysis, the results showed that the proposed system's secrecy performance became more efficient when the eavesdropper node E was farther away from the source node S and the intermediate cooperative relay R. The secrecy performance of U-1 was also compared to the secrecy performance of U-2. Finally, the simulation results matched the Monte Carlo simulations well.Web of Science203art. no. 89

    On secure system performance over SISO, MISO and MIMO-NOMA wireless networks equipped a multiple antenna based on TAS protocol

    Get PDF
    This study examined how to improve system performance by equipping multiple antennae at a base station (BS) and all terminal users/mobile devices instead of a single antenna as in previous studies. Experimental investigations based on three NOMA down-link models involved (1) a single-input-single-output (SISO) scenario in which a single antenna was equipped at a BS and for all users, (2) a multi-input-single-output (MISO) scenario in which multiple transmitter antennae were equipped at a BS and a single receiver antenna for all users and (3) a multi-input-multi-output (MIMO) scenario in which multiple transmitter antennae were equipped at a BS and multiple receiver antenna for all users. This study investigated and compared the outage probability (OP) and system throughput assuming all users were over Rayleigh fading channels. The individual scenarios also each had an eavesdropper. Secure system performance of the individual scenarios was therefore also investigated. In order to detect data from superimposed signals, successive interference cancellation (SIC) was deployed for users, taking into account perfect, imperfect and fully imperfect SICs. The results of analysis of users in these three scenarios were obtained in an approximate closed form by using the Gaussian-Chebyshev quadrature method. However, the clearly and accurately presented results obtained using Monte Carlo simulations prove and verify that the MIMO-NOMA scenario equipped with multiple antennae significantly improved system performance.Web of Science20201art. no. 1

    Secondary Network Throughput Optimization of NOMA Cognitive Radio Networks Under Power and Secure Constraints

    Get PDF
    Recently, the combination of cognitive radio networks with the nonorthogonal multiple access (NOMA) approach has emerged as a viable option for not only improving spectrum usage but also supporting large numbers of wireless communication connections. However, cognitive NOMA networks are unstable and vulnerable because multiple devices operate on the same frequency band. To overcome this drawback, many techniques have been proposed, such as optimal power allocation and interference cancellation. In this paper, we consider an approach by which the secondary transmitter (STx) is able to find the best licensed channel to send its confidential message to the secondary receivers (SRxs) by using the NOMA technique. To combat eavesdroppers and achieve reasonable performance, a power allocation policy that satisfies both the outage probability (OP) constraint of primary users and the security constraint of secondary users is optimized. The closed-form formulas for the OP at the primary base station and the leakage probability for the eavesdropper are obtained with imperfect channel state information. Furthermore, the throughput of the secondary network is analyzed to evaluate the system performance. Based on that, two algorithms (i.e., the continuous genetic algorithm (CGA) for CR NOMA (CGA-CRN) and particle swarm optimization (PSO) for CR NOMA (PSO-CRN)), are applied to optimize the throughput of the secondary network. These optimization algorithms guarantee not only the performance of the primary users but also the security constraints of the secondary users. Finally, simulations are presented to validate our research results and provide insights into how various factors affect system performance

    Secondary Network Throughput Optimization of NOMA Cognitive Radio Networks Under Power and Secure Constraints

    Get PDF
    Recently, the combination of cognitive radio networks with the nonorthogonal multiple access (NOMA) approach has emerged as a viable option for not only improving spectrum usage but also supporting large numbers of wireless communication connections. However, cognitive NOMA networks are unstable and vulnerable because multiple devices operate on the same frequency band. To overcome this drawback, many techniques have been proposed, such as optimal power allocation and interference cancellation. In this paper, we consider an approach by which the secondary transmitter (STx) is able to find the best licensed channel to send its confidential message to the secondary receivers (SRxs) by using the NOMA technique. To combat eavesdroppers and achieve reasonable performance, a power allocation policy that satisfies both the outage probability (OP) constraint of primary users and the security constraint of secondary users is optimized. The closed-form formulas for the OP at the primary base station and the leakage probability for the eavesdropper are obtained with imperfect channel state information. Furthermore, the throughput of the secondary network is analyzed to evaluate the system performance. Based on that, two algorithms (i.e., the continuous genetic algorithm (CGA) for CR NOMA (CGA-CRN) and particle swarm optimization (PSO) for CR NOMA (PSO-CRN)), are applied to optimize the throughput of the secondary network. These optimization algorithms guarantee not only the performance of the primary users but also the security constraints of the secondary users. Finally, simulations are presented to validate our research results and provide insights into how various factors affect system performance

    Security enhancement using a novel two-slot cooperative NOMA scheme

    Get PDF
    In this letter, we propose a novel cooperative non-orthogonal multiple access (NOMA) scheme to guarantee the secure transmission of a specific user via two time slots. During the first time slot, the base station (BS) transmits the superimposed signal to the first user and the relay via NOMA. Meanwhile, the signal for the first user is also decoded at the second user from the superimposed signal due to its high transmit power. In the second time slot, the relay forwards the signal to the second user while the BS retransmits the signal for the first user as interference to disrupt the eavesdropping. Due to the fact that the second user has obtained the signal for the first user in the first slot, the interference can be eliminated at the second user. To measure the performance of the proposed cooperative NOMA scheme, the outage probability for the first user and the secrecy outage probability for the second user are analyzed. Simulation results are presented to show the effectiveness of the proposed scheme
    corecore