1,566 research outputs found

    The Role of Physical Layer Security in Satellite-Based Networks

    Full text link
    In the coming years, 6G will revolutionize the world with a large amount of bandwidth, high data rates, and extensive coverage in remote and rural areas. These goals can only be achieved by integrating terrestrial networks with non-terrestrial networks. On the other hand, these advancements are raising more concerns than other wireless links about malicious attacks on satellite-terrestrial links due to their openness. Over the years, physical layer security (PLS) has emerged as a good candidate to deal with security threats by exploring the randomness of wireless channels. In this direction, this paper reviews how PLS methods are implemented in satellite communications. Firstly, we discuss the ongoing research on satellite-based networks by highlighting the key points in the literature. Then, we revisit the research activities on PLS in satellite-based networks by categorizing the different system architectures. Finally, we highlight research directions and opportunities to leverage the PLS in future satellite-based networks

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Self-Evolving Integrated Vertical Heterogeneous Networks

    Full text link
    6G and beyond networks tend towards fully intelligent and adaptive design in order to provide better operational agility in maintaining universal wireless access and supporting a wide range of services and use cases while dealing with network complexity efficiently. Such enhanced network agility will require developing a self-evolving capability in designing both the network architecture and resource management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover, employing an intelligent framework is another crucial requirement for self-evolving networks to deal with real-time network optimization problems. Hence, in this work, to provide a better insight on network architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on network management is also studied considering a generalized network model. Furthermore, the current literature on network management of integrated VHetNets along with the recent advancements in artificial intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.Comment: 25 pages, 5 figures, 2 table

    5G embraces satellites for 6G ubiquitous IoT : basic models for integrated satellite terrestrial networks

    Get PDF
    Terrestrial communication networks mainly focus on users in urban areas but have poor coverage performance in harsh environments, such as mountains, deserts, and oceans. Satellites can be exploited to extend the coverage of terrestrial fifth-generation (5G) networks. However, satellites are restricted by their high latency and relatively low data rate. Consequently, the integration of terrestrial and satellite components has been widely studied, to take advantage of both sides and enable the seamless broadband coverage. Due to the significant differences between satellite communications (SatComs) and terrestrial communications (TerComs) in terms of channel fading, transmission delay, mobility, and coverage performance, the establishment of an efficient hybrid satellite-terrestrial network (HSTN) still faces many challenges. In general, it is difficult to decompose a HSTN into a sum of separate satellite and terrestrial links due to the complicated coupling relationships therein. To uncover the complete picture of HSTNs, we regard the HSTN as a combination of basic cooperative models that contain the main traits of satellite-terrestrial integration but are much simpler and thus more tractable than the large-scale heterogeneous HSTNs. In particular, we present three basic cooperative models, i.e., model X, model L, and model V, and provide a survey of the state-of-the-art technologies for each of them. We discuss future research directions towards establishing a cell-free, hierarchical, decoupled HSTN. We also outline open issues to envision an agile, smart, and secure HSTN for the sixth-generation (6G) ubiquitous Internet of Things (IoT)
    • …
    corecore