13,095 research outputs found

    Thermodynamic AI and the fluctuation frontier

    Full text link
    Many Artificial Intelligence (AI) algorithms are inspired by physics and employ stochastic fluctuations. We connect these physics-inspired AI algorithms by unifying them under a single mathematical framework that we call Thermodynamic AI. Seemingly disparate algorithmic classes can be described by this framework, for example, (1) Generative diffusion models, (2) Bayesian neural networks, (3) Monte Carlo sampling and (4) Simulated annealing. Such Thermodynamic AI algorithms are currently run on digital hardware, ultimately limiting their scalability and overall potential. Stochastic fluctuations naturally occur in physical thermodynamic systems, and such fluctuations can be viewed as a computational resource. Hence, we propose a novel computing paradigm, where software and hardware become inseparable. Our algorithmic unification allows us to identify a single full-stack paradigm, involving Thermodynamic AI hardware, that could accelerate such algorithms. We contrast Thermodynamic AI hardware with quantum computing where noise is a roadblock rather than a resource. Thermodynamic AI hardware can be viewed as a novel form of computing, since it uses a novel fundamental building block. We identify stochastic bits (s-bits) and stochastic modes (s-modes) as the respective building blocks for discrete and continuous Thermodynamic AI hardware. In addition to these stochastic units, Thermodynamic AI hardware employs a Maxwell's demon device that guides the system to produce non-trivial states. We provide a few simple physical architectures for building these devices and we develop a formalism for programming the hardware via gate sequences. We hope to stimulate discussion around this new computing paradigm. Beyond acceleration, we believe it will impact the design of both hardware and algorithms, while also deepening our understanding of the connection between physics and intelligence.Comment: 47 pages, 18 figures, Added relevant reference

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Abstraction in decision-makers with limited information processing capabilities

    Full text link
    A distinctive property of human and animal intelligence is the ability to form abstractions by neglecting irrelevant information which allows to separate structure from noise. From an information theoretic point of view abstractions are desirable because they allow for very efficient information processing. In artificial systems abstractions are often implemented through computationally costly formations of groups or clusters. In this work we establish the relation between the free-energy framework for decision making and rate-distortion theory and demonstrate how the application of rate-distortion for decision-making leads to the emergence of abstractions. We argue that abstractions are induced due to a limit in information processing capacity.Comment: Presented at the NIPS 2013 Workshop on Planning with Information Constraint
    • …
    corecore