16,610 research outputs found

    Physical implementations for quantum communication in quantum networks

    Get PDF
    A quantum network where the data stored, processed, and communicated consists of quantum bits, would offer exciting possibilities including teleportation, dense coding, quantum money, secured quantum key distribution, and perhaps distributed quantum computing. But how to implement such a network? In this contribution we describe a concrete physical implementation consisting of atoms placed inside high-Q optical cavities, connected by optical fibers, that allow the atoms to communicate with each other using a cavity photon as the information carrier

    Polarization entanglement storage in ensemble-based atomic memories

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 83-85).Quantum networks enable the long-distance communication of quantum states through teleportation, but require, in advance, the robust distribution of entanglement between relevant parties. Engineering these networks requires quantum interconnects, which convert quantum states in one physical system to those of another reversibly, and with high fidelity. In this thesis, we describe implementations of long-distance quantum communication networks using polarization entanglement and atomic ensembles. We concisely describe the interactions of a quantum optical field with a heralding atomic ensemble, accounting for multiple-pair events at entanglement generation, as well as finite transmission and photodetection efficiencies under number-resolving and non-resolving photodetection schemes. Using these results, we perform a detailed quantitative performance analysis of quantum networks that distribute and swap entanglement.by Bhaskar Mookerji.M.Eng

    Analysis of multiple overlapping paths algorithms for secure key exchange in large-scale quantum networks

    Get PDF
    Quantum networks open the way to an unprecedented level of communication security. However, due to physical limitations on the distances of quantum links, current implementations of quantum networks are unavoidably equipped with trusted nodes. Consequently, the quantum key distribution can be performed only on the links. Due to this, some new authentication and key exchange schemes must be considered to fully benefit from the unconditional security of the links. One such approach uses Multiple Non-Overlapping Paths (MNOPs) for key exchange to mitigate the risk of an attack on a trusted node. The scope of the article is to perform a security analysis of this scheme for the case of both uncorrelated attacks and correlated attacks with finite resources. Furthermore, our analysis is extended to the case of Multiple Overlapping Paths (MOPs). We prove that introducing overlapping paths allows one to increase the security of the protocol, compared to the non-overlapping case with the same number of additional links added. This result may find application in optimising architectures of large-scale (hybrid) quantum networks

    Learning Quantum Systems

    Get PDF
    Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing. One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size. This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control. While the complete simulation of large-scale quantum systems may only be possible with a quantum computer, classical characterisation and optimisation methods (supported by cutting edge numerical techniques) can still play an important role. Here, we review classical approaches to learning quantum systems, their correlation properties, their dynamics and their interaction with the environment. We discuss theoretical proposals and successful implementations in different physical platforms such as spin qubits, trapped ions, photonic and atomic systems, and superconducting circuits. This review provides a brief background for key concepts recurring across many of these approaches, such as the Bayesian formalism or Neural Networks, and outlines open questions

    Using quantum key distribution for cryptographic purposes: a survey

    Full text link
    The appealing feature of quantum key distribution (QKD), from a cryptographic viewpoint, is the ability to prove the information-theoretic security (ITS) of the established keys. As a key establishment primitive, QKD however does not provide a standalone security service in its own: the secret keys established by QKD are in general then used by a subsequent cryptographic applications for which the requirements, the context of use and the security properties can vary. It is therefore important, in the perspective of integrating QKD in security infrastructures, to analyze how QKD can be combined with other cryptographic primitives. The purpose of this survey article, which is mostly centered on European research results, is to contribute to such an analysis. We first review and compare the properties of the existing key establishment techniques, QKD being one of them. We then study more specifically two generic scenarios related to the practical use of QKD in cryptographic infrastructures: 1) using QKD as a key renewal technique for a symmetric cipher over a point-to-point link; 2) using QKD in a network containing many users with the objective of offering any-to-any key establishment service. We discuss the constraints as well as the potential interest of using QKD in these contexts. We finally give an overview of challenges relative to the development of QKD technology that also constitute potential avenues for cryptographic research.Comment: Revised version of the SECOQC White Paper. Published in the special issue on QKD of TCS, Theoretical Computer Science (2014), pp. 62-8

    Spatial mode control and advanced methods for multi-platform quantum communication

    Get PDF
    Though state-of-the-art quantum computers are currently limited to only a handful of physical qubits, a quantum computer large enough to perform prime factorization of modern cryptographic keys, quantum simulation, and quantum-enhanced searching algorithms will likely become viable within a few decades. Such computers demand communication networks that preserve the qualities of the quantum states used as inputs and outputs; they also herald the end of the flavors of classical cryptography reliant on the complexity of factoring large numbers. As a result, future networks must include channels which preserve the states of single photons over useful distances (e.g., using quantum repeaters), and must deploy quantum-safe cryptography to ensure the safety of classical information passing over the network. Here we discuss strategies affecting several areas of a future quantum-enabled network: first, we demonstrate a technique for adaptively coupling single photons from point sources into single-mode optical fiber and apply the technique to coupling from quantum dots (a popular candidate for a future quantum repeater); secondly, we discuss various methods for simulating the effects of atmospheric turbulence on quantum cryptographic protocols in the laboratory, critical for understand the challenges facing free-space implementations of quantum communication. Thirdly, we demonstrate a technique that enables quantum cryptographic networks over free space channels to function in the presence of strong atmospheric turbulence using a multi-aperture receiver. Finally, we discuss our efforts to miniaturize a quantum key distribution system and operate a key distribution channel between flying multirotor drones

    Quantum Key Distribution

    Get PDF
    This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduction to QKD assuming the reader has no or very little knowledge about cryptography, and briefly present the state-of-the-art of QKD. In the second half of the chapter we describe, as an example of a real-world QKD system, the system deployed between the University of Calgary and SAIT Polytechnic. We conclude the chapter with a brief discussion of quantum networks and future steps.Comment: 20 pages, 12 figure
    • …
    corecore