137 research outputs found

    Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand

    Full text link
    We study a class of robust network design problems motivated by the need to scale core networks to meet increasingly dynamic capacity demands. Past work has focused on designing the network to support all hose matrices (all matrices not exceeding marginal bounds at the nodes). This model may be too conservative if additional information on traffic patterns is available. Another extreme is the fixed demand model, where one designs the network to support peak point-to-point demands. We introduce a capped hose model to explore a broader range of traffic matrices which includes the above two as special cases. It is known that optimal designs for the hose model are always determined by single-hub routing, and for the fixed- demand model are based on shortest-path routing. We shed light on the wider space of capped hose matrices in order to see which traffic models are more shortest path-like as opposed to hub-like. To address the space in between, we use hierarchical multi-hub routing templates, a generalization of hub and tree routing. In particular, we show that by adding peak capacities into the hose model, the single-hub tree-routing template is no longer cost-effective. This initiates the study of a class of robust network design (RND) problems restricted to these templates. Our empirical analysis is based on a heuristic for this new hierarchical RND problem. We also propose that it is possible to define a routing indicator that accounts for the strengths of the marginals and peak demands and use this information to choose the appropriate routing template. We benchmark our approach against other well-known routing templates, using representative carrier networks and a variety of different capped hose traffic demands, parameterized by the relative importance of their marginals as opposed to their point-to-point peak demands

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    Measuring and Understanding Throughput of Network Topologies

    Full text link
    High throughput is of particular interest in data center and HPC networks. Although myriad network topologies have been proposed, a broad head-to-head comparison across topologies and across traffic patterns is absent, and the right way to compare worst-case throughput performance is a subtle problem. In this paper, we develop a framework to benchmark the throughput of network topologies, using a two-pronged approach. First, we study performance on a variety of synthetic and experimentally-measured traffic matrices (TMs). Second, we show how to measure worst-case throughput by generating a near-worst-case TM for any given topology. We apply the framework to study the performance of these TMs in a wide range of network topologies, revealing insights into the performance of topologies with scaling, robustness of performance across TMs, and the effect of scattered workload placement. Our evaluation code is freely available

    Sampling cluster endurance for peer-to-peer based content distribution networks

    Get PDF
    Several types of Content Distribution Networks are being deployed over the Internet today, based on different architectures to meet their requirements (e.g., scalability, efficiency and resiliency). Peer-to-peer (P2P) based Content Distribution Networks are promising approaches that have several advantages. Structured P2P networks, for instance, take a proactive approach and provide efficient routing mechanisms. Nevertheless, their maintenance can increase considerably in highly dynamic P2P environments. In order to address this issue, a two-tier architecture called Omicron that combines a structured overlay network with a clustering mechanism is suggested in a hybrid scheme. In this paper, we examine several sampling algorithms utilized in the aforementioned hybrid network that collect local information in order to apply a selective join procedure. Additionally, we apply the sampling algorithms on Chord in order to evaluate sampling as a general information gathering mechanism. The algorithms are based mostly on random walks inside the overlay networks. The aim of the selective join procedure is to provide a well balanced and stable overlay infrastructure that can easily overcome the unreliable behavior of the autonomous peers that constitute the network. The sampling algorithms are evaluated using simulation experiments as well as probabilistic analysis where several properties related to the graph structure are reveale

    A Fringe Projection System for Measurement of Condensing Fluid Films in Reduced Gravity

    Get PDF
    The thesis describes the design of a fringe projection system to study the dynamics of condensation with potential application in a reduced gravity environment. The concept is that an optical system for imaging the condensation layer enables extraction of valuable data from the image because of the ability of the optical system to image the perturbations in the condensation films. By acquiring a sequence of images of the deformed fringe pattern, the change in the surface topology can be observed over time, giving greater understanding of condensation dynamics in reduced gravity

    Using holography to measure particle extinction and surface topography

    Get PDF
    Master of ScienceDepartment of PhysicsMatthew J. BergSince its conception, holography has been applied to everything from microscopy and interferometry to art and security. Two separate applications of holography are discussed in detail. In the first project, holography is used to obtain a measurement of the extinction cross section of various micron sized particles, which are compared to the discrete dipole approximation (DDA) cross sectional values. We are also interested in the structure of ``fairy castles'', a model developed to explain the photometric behavior of the surface of the moon. A holographic solution in conjunction with phase unwrapping is obtained, and the basics of phase unwrapping are discussed
    corecore