34 research outputs found

    A Link Quality Model for Generalised Frequency Division Multiplexing

    Get PDF
    5G systems aim to achieve extremely high data rates, low end-to-end latency and ultra-low power consumption. Recently, there has been considerable interest in the design of 5G physical layer waveforms. One important candidate is Generalised Frequency Division Multiplexing (GFDM). In order to evaluate its performance and features, system-level studies should be undertaken in a range of scenarios. These studies, however, require highly complex computations if they are performed using bit-level simulators. In this paper, the Mutual Information (MI) based link quality model (PHY abstraction), which has been regularly used to implement system-level studies for Orthogonal Frequency Division Multiplexing (OFDM), is applied to GFDM. The performance of the GFDM waveform using this model and the bit-level simulation performance is measured using different channel types. Moreover, a system-level study for a GFDM based LTE-A system in a realistic scenario, using both a bit-level simulator and this abstraction model, has been studied and compared. The results reveal the accuracy of this model using realistic channel data. Based on these results, the PHY abstraction technique can be applied to evaluate the performance of GFDM based systems in an effective manner with low complexity. The maximum difference in the Packet Error Rate (PER) and throughput results in the abstraction case compared to bit-level simulation does not exceed 4% whilst offering a simulation time saving reduction of around 62,000 times.Comment: 5 pages, 8 figures, accepted in VTC- spring 201

    LTE-Advanced Downlink Throughput Evaluation In The 3G And TV White Space Bands

    Get PDF

    Throughput sensitivity to antenna pattern and orientation in 802.11n networks

    Get PDF

    Evaluating Realistic Performance Gains of Massive Multi-User MIMO System in Urban City Deployments

    Get PDF

    PHY Abstraction Methodsfor OFDM and NOFDM Systems, Journal of Telecommunications and Information Technology, 2009 nr 3

    Get PDF
    In the paper various PHY abstraction methods for both orthogonal and non-orthogonal systems are presented, which allow to predict the coded block error rate (BLER) across the subcarriers transmitting this FEC-coded block for any given channel realization. First the efficiency of the selected methods is investigated and proved by the means of computer simulations carried out in orthogonal muticarrier scenario. Presented results are followed by the generalization and theoretical extension of these methods for non-orthogonal systems

    Massive MIMO real-time channel measurements and theoretic TDD downlink throughput predictions

    Get PDF
    corecore