19,446 research outputs found

    Using Avida to test the effects of natural selection on phylogenetic reconstruction methods

    Get PDF
    Phylogenetic trees group organisms by their ancestral relationships. There are a number of distinct algorithms used to reconstruct these trees from molecular sequence data, but different methods sometimes give conflicting results. Since there are few precisely known phylogenies, simulations are typically used to test the quality of reconstruction algorithms. These simulations randomly evolve strings of symbols to produce a tree, and then the algorithms are run with the tree leaves as inputs. Here we use Avida to test two widely used reconstruction methods, which gives us the chance to observe the effect of natural selection on tree reconstruction. We find that if the organisms undergo natural selection between branch points, the methods will be successful even on very large time scales. However, these algorithms often falter when selection is absent

    Practice-oriented controversies and borrowed epistemic credibility in current evolutionary biology: phylogeography as a case study

    Get PDF
    Although there is increasing recognition that theory and practice in science are intimately intertwined, philosophy of science perspectives on scientific controversies have been historically focused on theory rather than practice. As a step in the construction of frameworks for understanding controversies linked to scientific practices, here we introduce the notion of borrowed epistemic credibility (BEC), to describe the situation in which scientists, in order to garner support for their own stances, exploit similarities between tenets in their own field and accepted statements or positions properly developed within other areas of expertise. We illustrate the scope of application of our proposal with the analysis of a heavily methods-grounded, recent controversy in phylogeography, a biological subdiscipline concerned with the study of the historical causes of biogeographical variation through population genetics- and phylogenetics-based computer analyses of diversity in DNA sequences, both within species and between closely related taxa. Toward this end, we briefly summarize the arguments proposed by selected authors representing each side of the controversy: the ‘nested clade analysis’ school versus the ‘statistical phylogeography’ orientation. We claim that whereas both phylogeographic ‘research styles’ borrow epistemic credibility from sources such as formal logic, the familiarity of results from other scientific areas, the authority of prominent scientists, or the presumed superiority of quantitative vs. verbal reasoning, ‘theory’ plays essentially no role as a foundation of the controversy. Besides underscoring the importance of strictly methodological and other non-theoretical aspects of controversies in current evolutionary biology, our analysis suggests a perspective with potential usefulness for the re-examination of more general philosophy of biology issues, such as the nature of historical inference, rationality, justification, and objectivity

    Probabilistic Graphical Model Representation in Phylogenetics

    Get PDF
    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (1) reproducibility of an analysis, (2) model development and (3) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and non-specialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution

    Coming to America: Multiple Origins of New World Geckos

    Get PDF
    Geckos in the Western Hemisphere provide an excellent model to study faunal assembly at a continental scale. We generated a time-calibrated phylogeny, including exemplars of all New World gecko genera, to produce a biogeographic scenario for the New World geckos. Patterns of New World gecko origins are consistent with almost every biogeographic scenario utilized by a terrestrial vertebrate with different New World lineages showing evidence of vicariance, dispersal via temporary land bridge, overseas dispersal, or anthropogenic introductions. We also recovered a strong relationship between clade age and species diversity, with older New World lineages having more species than more recently arrived lineages. Our data provide the first phylogenetic hypothesis for all New World geckos and highlight the intricate origins and ongoing organization of continental faunas. The phylogenetic and biogeographical hypotheses presented here provide an historical framework to further pursue research on the diversification and assembly of the New World herpetofauna

    Combinatorics of least squares trees

    Get PDF
    A recurring theme in the least squares approach to phylogenetics has been the discovery of elegant combinatorial formulas for the least squares estimates of edge lengths. These formulas have proved useful for the development of efficient algorithms, and have also been important for understanding connections among popular phylogeny algorithms. For example, the selection criterion of the neighbor-joining algorithm is now understood in terms of the combinatorial formulas of Pauplin for estimating tree length. We highlight a phylogenetically desirable property that weighted least squares methods should satisfy, and provide a complete characterization of methods that satisfy the property. The necessary and sufficient condition is a multiplicative four point condition that the the variance matrix needs to satisfy. The proof is based on the observation that the Lagrange multipliers in the proof of the Gauss--Markov theorem are tree-additive. Our results generalize and complete previous work on ordinary least squares, balanced minimum evolution and the taxon weighted variance model. They also provide a time optimal algorithm for computation

    Adventures in Invariant Theory

    Full text link
    We provide an introduction to enumerating and constructing invariants of group representations via character methods. The problem is contextualised via two case studies arising from our recent work: entanglement measures, for characterising the structure of state spaces for composite quantum systems; and Markov invariants, a robust alternative to parameter-estimation intensive methods of statistical inference in molecular phylogenetics.Comment: 12 pp, includes supplementary discussion of example
    • …
    corecore