282 research outputs found

    A Computational-Experimental Approach Identifies Mutations That Enhance Surface Expression of an Oseltamivir-Resistant Influenza Neuraminidase

    Get PDF
    The His274 → Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1

    Prevalence of Epistasis in the Evolution of Influenza A Surface Proteins

    Get PDF
    The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs

    Large-scale analysis of influenza A virus nucleoprotein sequence conservation reveals potential drug-target sites

    Get PDF
    The nucleoprotein (NP) of the influenza A virus encapsidates the viral RNA and participates in the infectious life cycle of the virus. The aims of this study were to find the degree of conservation of NP among all virus subtypes and hosts and to identify conserved binding sites, which may be utilised as potential drug target sites. The analysis of conservation based on 4430 amino acid sequences identified high conservation in known functional regions as well as novel highly conserved sites. Highly variable clusters identified on the surface of NP may be associated with adaptation to different hosts and avoidance of the host immune defence. Ligand binding potential overlapping with high conservation was found in the tail-loop binding site and near the putative RNA binding region. The results provide the basis for developing antivirals that may be universally effective and have a reduced potential to induce resistance through mutations.Peer reviewe

    Changes in the antigenic and genetic structure of influenza viruses: analysis of surveillance data of influenza A and B in Russia in 2006-2013

    Get PDF
    The goal of this research project was to study the natural variability of human influenza A and B viruses based on the analysis of the population structure of influenza viruses, circulating in Russia in 2006-2013, in order to determine the direction of their genetic and antigenic drift by comparison to the WHO reference strains. Our results proved that during that period significant changes occurred in the genetic structure of influenza viruses, their phylogenetic affiliation, as well as their sensitivity to antiviral drugs. According to the surveillance data, the percentage of influenza A(H1N1) viruses among patients with influenza-like illness or acute respiratory infection gradually decreased from 42% of the total number of influenza viruses in 2006-2007 to 19% in 2008- 2009. Influenza A(H1N1) viruses are characterized by «silent» variability that manifests in the gradual accumulation of amino acid substitutions in the minor undetectable group of viruses.The share of influenza A(H3N2) viruses varied from 10% in the 1st post pandemic year to approx. 60% in 2008-2009 and 2011- 2012 epidemic seasons. All of the influenza A strains isolated during the last years of the period, covered in this study, were found to be susceptible to neuraminidase inhibitors and resistant to adamantane antivirals.Influenza B viruses of both Yamagata and Victoria lineages circulated in Russia in the period from 2006 to 2013. The vast majority of these influenza B viruses belonged to the Victoria lineage. Phylogenetic and antigenic analyses of influenza B viruses have demonstrated a gradual drift of Russian isolates from the reference strains. No changes leading to resistance to oseltamivir or zanamivir were found in influenza B strains isolated until 2013.The goal of this research project was to study the natural variability of human influenza A and B viruses based on the analysis of the population structure of influenza viruses, circulating in Russia in 2006-2013, in order to determine the direction of their genetic and antigenic drift by comparison to the WHO reference strains. Our results proved that during that period significant changes occurred in the genetic structure of influenza viruses, their phylogenetic affiliation, as well as their sensitivity to antiviral drugs. According to the surveillance data, the percentage of influenza A(H1N1) viruses among patients with influenza-like illness or acute respiratory infection gradually decreased from 42% of the total number of influenza viruses in 2006-2007 to 19% in 2008- 2009. Influenza A(H1N1) viruses are characterized by «silent» variability that manifests in the gradual accumulation of amino acid substitutions in the minor undetectable group of viruses. The share of influenza A(H3N2) viruses varied from 10% in the 1st post pandemic year to approx. 60% in 2008-2009 and 2011- 2012 epidemic seasons. All of the influenza A strains isolated during the last years of the period, covered in this study, were found to be susceptible to neuraminidase inhibitors and resistant to adamantane antivirals. Influenza B viruses of both Yamagata and Victoria lineages circulated in Russia in the period from 2006 to 2013. The vast majority of these influenza B viruses belonged to the Victoria lineage. Phylogenetic and antigenic analyses of influenza B viruses have demonstrated a gradual drift of Russian isolates from the reference strains. No changes leading to resistance to oseltamivir or zanamivir were found in influenza B strains isolated until 2013

    Influenza virus susceptibility to antiviral drugs : drug susceptibility profiling, whole-genome mutational landscape and selective pressure footprints

    Get PDF
    Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2018Antivirals play an important and decisive role in the clinical management of influenza and in the underlying reduction of related morbidity and mortality. The emergence of antiviral resistance, and particularly of transmissible resistance, poses a serious threat to public health as it could render influenza antivirals useless against circulating viruses. This is even more worrying when considering the current paucity of alternative antiviral therapy choices. This PhD research project aimed at disclosing the susceptibility of human influenza viruses circulating in Portugal to nationally approved antivirals, and at improving the knowledge on the evolutionary dynamics underlying the emergence and/or spread of influenza variants resistant or with decreased susceptibility to neuraminidase inhibitor (NAI) drugs. To this end, the project focused on three main areas: antiviral susceptibility testing; whole-genome sequencing; and selective pressure (SP) footprints on human influenza neuraminidase (NA)(NAI target). Antiviral susceptibility testing was performed on human influenza viruses circulating in both community and hospital settings from 2004/2005 to 2012/2013, after establishing a technological platform for comprehensive evaluation of virus susceptibility to M2 protein inhibitors and the NAIs oseltamivir (OS) and zanamivir (ZA) (objective 1). Important findings were made on: the circulation of drug-resistant A(H3N2) (M2 inhibitors) and former seasonal (H1N1) (OS) viruses; the cut-off for potentially clinically relevant sub-populations of drug-resistant virus; a potential novel amino acid substitution conferring slightly decreased susceptibility to ZA (N2 NA) and a novel source for a variant with decreased susceptibility; and, the virus type or subtype specificity of two amino acid substitutions conferring reduced susceptibility to the drug. Overall susceptibility data contributed at a better understanding of the relationship between virus NAI susceptibility phenotype and genotype and of the natural variations in the in vitro NAI susceptibility of circulating viruses over time. The emergence of new drift variants (former seasonal A(H1N1), A(H3N2)), the co-circulation of distinct virus lineages (influenza B) and the increase in OS drug use (A(H1N1)pdm09) were found to potentially play a role in this latter. Influenza viruses exhibiting resistance or decreased susceptibility to OS and/or ZA were further evaluated through whole-genome sequencing to identify and characterize the amino acid substitutions specific of their genome (objective 2). No genetic support was found for the fitter NA H275Y OS resistant former seasonal A(H1N1) viruses, but mutations known to or that based on its structural location or functional impact may play a role in the overall viral fitness, were identified in the genome of single or few viruses resistant or with decreased susceptibility to the drug. Large datasets of full-length NA gene sequences of worldwide circulating viruses were created to estimate the global and site-specific SP acting on influenza NA, particularly on the sites associated with NAI resistance or reduced susceptibility and/or contacting with the drug (objective 3a). Further temporal splitting of NA gene sequences allowed to investigate for the first time the impact of NAI introduction into clinic (1999) and/or its increased use during 2009 A(H1N1) pandemic on the SP acting on NA (objective 3b). Major findings include: the potential role of positive SP (PSP) in the low-level and locally variable spread of NA H275Y OS-resistant A(H1N1)pdm09 viruses that has been observed in the community; a potential risk of spread of a synergistic drug-resistant (H275Y/S247N) or a RI (S247G) variant in A(H1N1)pdm09 subtype and a RI variant (A395E) in B/Victoria lineage (positive diversifying selection); and the potential lack of impact of both NAI introduction into clinic and its increased use during 2009 A(H1N1) pandemic on the global and site-specific SP acting on influenza NA, with the single exception of site 154 of B/YAM-lineage NA (framework active site residue). Overall mapping of site-specific SP across the different NA subtypes or lineages allowed for further identify 7 potential new regions for drug targeting. This project marked the beginning of influenza antiviral susceptibility testing and monitoring activities in Portugal. It not only established the technological capacity and capability required to perform such activities but also generated comprehensive information on the susceptibility of circulating human influenza viruses, essential to contribute to both global and European influenza surveillance on antiviral susceptibility. The project also contributed at finding potential determinants of viral fitness in the genome of influenza virus resistant or with decreased susceptibility to NAIs, based on its location onto the protein structure; and at elucidating the role of PSP in the evolutionary pathways to NAI resistance or reduced susceptibility.Fundação Calouste Gulbenkian, projetos FCG 76676 e SDH49; Administração Central do Sistema de Saúde, I.P. (ACSS), projeto SDH4

    Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus

    Get PDF
    The source, timing, and geographical origin of the 1918–1920 pandemic influenza A virus have remained tenaciously obscure for nearly a century, as have the reasons for its unusual severity among young adults. Here, we reconstruct the origins of the pandemic virus and the classic swine influenza and (postpandemic) seasonal H1N1 lineages using a host-specific molecular clock approach that is demonstrably more accurate than previous methods. Our results suggest that the 1918 pandemic virus originated shortly before 1918 when a human H1 virus, which we infer emerged before ∼1907, acquired avian N1 neuraminidase and internal protein genes. We find that the resulting pandemic virus jumped directly to swine but was likely displaced in humans by ∼1922 by a reassortant with an antigenically distinct H1 HA. Hence, although the swine lineage was a direct descendent of the pandemic virus, the post-1918 seasonal H1N1 lineage evidently was not, at least for HA. These findings help resolve several seemingly disparate observations from 20th century influenza epidemiology, seroarcheology, and immunology. The phylogenetic results, combined with these other lines of evidence, suggest that the highmortality in 1918 among adults aged ∼20 to ∼40 y may have been due primarily to their childhood exposure to a doubly heterosubtypic putative H3N8 virus, which we estimate circulated from ∼1889–1900. All other age groups (except immunologically naive infants) were likely partially protected by childhood exposure to N1 and/or H1-related antigens. Similar processes may underlie age-specific mortality differences between seasonal H1N1 vs. H3N2 and human H5N1 vs. H7N9 infections

    Mutation Analysis of 2009 Pandemic Influenza A(H1N1) Viruses Collected in Japan during the Peak Phase of the Pandemic

    Get PDF
    BACKGROUND: Pandemic influenza A(H1N1) virus infection quickly circulated worldwide in 2009. In Japan, the first case was reported in May 2009, one month after its outbreak in Mexico. Thereafter, A(H1N1) infection spread widely throughout the country. It is of great importance to profile and understand the situation regarding viral mutations and their circulation in Japan to accumulate a knowledge base and to prepare clinical response platforms before a second pandemic (pdm) wave emerges. METHODOLOGY: A total of 253 swab samples were collected from patients with influenza-like illness in the Osaka, Tokyo, and Chiba areas both in May 2009 and between October 2009 and January 2010. We analyzed partial sequences of the hemagglutinin (HA) and neuraminidase (NA) genes of the 2009 pdm influenza virus in the collected clinical samples. By phylogenetic analysis, we identified major variants of the 2009 pdm influenza virus and critical mutations associated with severe cases, including drug-resistance mutations. RESULTS AND CONCLUSIONS: Our sequence analysis has revealed that both HA-S220T and NA-N248D are major non-synonymous mutations that clearly discriminate the 2009 pdm influenza viruses identified in the very early phase (May 2009) from those found in the peak phase (October 2009 to January 2010) in Japan. By phylogenetic analysis, we found 14 micro-clades within the viruses collected during the peak phase. Among them, 12 were new micro-clades, while two were previously reported. Oseltamivir resistance-related mutations, i.e., NA-H275Y and NA-N295S, were also detected in sporadic cases in Osaka and Tokyo

    Influenza A(H1N1)pdm09 Resistance and Cross-Decreased Susceptibility to Oseltamivir and Zanamivir Antiviral Drugs

    Get PDF
    Neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are currently the only effective antiviral drugs available worldwide for the management of influenza. The potential development of resistance is continually threatening their use, rationalizing and highlighting the need for a close and sustained evaluation of virus susceptibility. This study aimed to analyze and characterize the phenotypic and genotypic NAIs susceptibility profiles of A(H1N1)pdm09 viruses circulating in Portugal from 2009 to 2010/2011. A total of 144 cases of A(H1N1)pdm09 virus infection from community and hospitalized patients were studied, including three suspected cases of clinical resistance to oseltamivir. Oseltamivir resistance was confirmed for two of the suspected cases. Neuraminidase (NA) H275Y resistant marker was found in viruses from both cases but for one it was only present in 26.2% of virus population, raising questions about the minimal percentage of resistant virus that should be considered relevant. Cross-decreased susceptibility to oseltamivir and zanamivir (2-4 IC50 fold-change) was detected on viruses from two potentially linked community patients from 2009. Both viruses harbored the NA I223V mutation. NA Y155H mutation was found in 18 statistical non-outlier viruses from 2009, having no impact on virus susceptibility. The mutations at NA N369K and V241I may have contributed to the significantly higher baseline IC50 value obtained to oseltamivir for 2010/2011 viruses, compared to viruses from the pandemic period. These results may contribute to a better understanding of the relationship between phenotype and genotype, which is currently challenging, and to the global assessment of A(H1N1)pdm09 virus susceptibility profile and baseline level to NAIs

    Canalization of the evolutionary trajectory of the human influenza virus

    Get PDF
    Since its emergence in 1968, influenza A (H3N2) has evolved extensively in genotype and antigenic phenotype. Antigenic evolution occurs in the context of a two-dimensional 'antigenic map', while genetic evolution shows a characteristic ladder-like genealogical tree. Here, we use a large-scale individual-based model to show that evolution in a Euclidean antigenic space provides a remarkable correspondence between model behavior and the epidemiological, antigenic, genealogical and geographic patterns observed in influenza virus. We find that evolution away from existing human immunity results in rapid population turnover in the influenza virus and that this population turnover occurs primarily along a single antigenic axis. Thus, selective dynamics induce a canalized evolutionary trajectory, in which the evolutionary fate of the influenza population is surprisingly repeatable and hence, in theory, predictable.Comment: 29 pages, 5 figures, 10 supporting figure

    Synergistic effect of the homologous PB1–NA gene constellation in Influenza A virus reassortants: Evaluation and characterization of reassortant influenza variant viruses cross-resistant to influenza Neuraminidase Inhibitors

    Get PDF
    This project aims to elucidate the functional impact of specific mutation induced changes in the NA and PB1 genes on the viral fitness and cross-resistance profile of A(H1N1)pdm09 viruses.info:eu-repo/semantics/publishedVersio
    corecore