816 research outputs found

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    Design and development of dual-Polarised photovoltaic solar antennae for Ku-band SatComsp.

    Get PDF
    The aim of this thesis is to review the state-of-the-art of transparent patch antennae and to develop design techniques for the experimental development of dual-band, dual-polarised compact transparent patch antennae integrated with solar cells for Ku-band satellite applications. It can be specifically used for Fixed-Satellite-Services (FSS) operating over the frequency range from 11.7 GHz to 12.22 GHz (downlink) and 14.0 GHz to 14.5 GHz (uplink) bands. The research reported in this thesis demonstrated a suspended meshed patch antennae serves as a basic building-block element for a Ku-band dual-polarised transparent array antennae for long distance communications. The results are shown that the use of a suspended patch above a printed radiating patch and ground plane (all transparent) provides dual-band operation for the uplink and downlink. In this work, firstly, a compact low-profile linearly polarised meshed element has been designed, and simulated in CST Microwave Studio electromagnetic simulation software. The photovoltaic antennae element was then fabricated and measured. The comparison between the experimental results and simulation by CST demonstrates good agreement between predicted and practical measurements. The developed antennae element achieved the overall broad bandwidth of more than 1GHz (500 MHz in each of the uplink and downlink bands), and the nominal element gain is 6.055 dBi (downlink) and 7.61 dBi (uplink). A good compromise between the RF performance and the transparency is also obtained with optical transparency of 84% and negligible degradation of the RF performance. The design is then extended to develop a Ku-band photovoltaic antennae element for dualpolarised operation This element could be used for frequency re-use in Ku-band satellite downlink and uplink communicationsin order to double capacity. In addition, the simulation of a 2 x2 sub-array of dual polarised transparent antennae elements (using the experimentally measured performance of the single dual-polarised element) is presented. It has yielded a narrow beam with increased gain of 13 dBi and a cross-polar discrimination of greater than 30 dB is demonstrated, which is a requirement for frequency re-use operation. Hence, the dual-polarised 4-element sub-array described herein could be utilised as the primary building block for a 2D SatCom phased array antennae. In order to meet the full requirements of Kuband SatCom communications employing frequency re-use which essentially doubles the achievable capacity, i.e. two data channels can use the same frequency bands simultaneously using the two orthogonal polarisations with high cross-polar isolation. Using these new designs providing new knowledge in the field of photovoltaic communication antennae at high frequencies, and bridge the associated drawbacks with the current PV antennae

    Electronics for Power and Energy Management

    Get PDF
    • …
    corecore