240 research outputs found

    Object-based attention mechanism for color calibration of UAV remote sensing images in precision agriculture.

    Get PDF
    Color calibration is a critical step for unmanned aerial vehicle (UAV) remote sensing, especially in precision agriculture, which relies mainly on correlating color changes to specific quality attributes, e.g. plant health, disease, and pest stresses. In UAV remote sensing, the exemplar-based color transfer is popularly used for color calibration, where the automatic search for the semantic correspondences is the key to ensuring the color transfer accuracy. However, the existing attention mechanisms encounter difficulties in building the precise semantic correspondences between the reference image and the target one, in which the normalized cross correlation is often computed for feature reassembling. As a result, the color transfer accuracy is inevitably decreased by the disturbance from the semantically unrelated pixels, leading to semantic mismatch due to the absence of semantic correspondences. In this article, we proposed an unsupervised object-based attention mechanism (OBAM) to suppress the disturbance of the semantically unrelated pixels, along with a further introduced weight-adjusted Adaptive Instance Normalization (AdaIN) (WAA) method to tackle the challenges caused by the absence of semantic correspondences. By embedding the proposed modules into a photorealistic style transfer method with progressive stylization, the color transfer accuracy can be improved while better preserving the structural details. We evaluated our approach on the UAV data of different crop types including rice, beans, and cotton. Extensive experiments demonstrate that our proposed method outperforms several state-of-the-art methods. As our approach requires no annotated labels, it can be easily embedded into the off-the-shelf color transfer approaches. Relevant codes and configurations will be available at https://github.com/huanghsheng/object-based-attention-mechanis

    Ultrafast Photorealistic Style Transfer via Neural Architecture Search

    Full text link
    The key challenge in photorealistic style transfer is that an algorithm should faithfully transfer the style of a reference photo to a content photo while the generated image should look like one captured by a camera. Although several photorealistic style transfer algorithms have been proposed, they need to rely on post- and/or pre-processing to make the generated images look photorealistic. If we disable the additional processing, these algorithms would fail to produce plausible photorealistic stylization in terms of detail preservation and photorealism. In this work, we propose an effective solution to these issues. Our method consists of a construction step (C-step) to build a photorealistic stylization network and a pruning step (P-step) for acceleration. In the C-step, we propose a dense auto-encoder named PhotoNet based on a carefully designed pre-analysis. PhotoNet integrates a feature aggregation module (BFA) and instance normalized skip links (INSL). To generate faithful stylization, we introduce multiple style transfer modules in the decoder and INSLs. PhotoNet significantly outperforms existing algorithms in terms of both efficiency and effectiveness. In the P-step, we adopt a neural architecture search method to accelerate PhotoNet. We propose an automatic network pruning framework in the manner of teacher-student learning for photorealistic stylization. The network architecture named PhotoNAS resulted from the search achieves significant acceleration over PhotoNet while keeping the stylization effects almost intact. We conduct extensive experiments on both image and video transfer. The results show that our method can produce favorable results while achieving 20-30 times acceleration in comparison with the existing state-of-the-art approaches. It is worth noting that the proposed algorithm accomplishes better performance without any pre- or post-processing

    Inverting Adversarially Robust Networks for Image Synthesis

    Full text link
    Recent research in adversarially robust classifiers suggests their representations tend to be aligned with human perception, which makes them attractive for image synthesis and restoration applications. Despite favorable empirical results on a few downstream tasks, their advantages are limited to slow and sensitive optimization-based techniques. Moreover, their use on generative models remains unexplored. This work proposes the use of robust representations as a perceptual primitive for feature inversion models, and show its benefits with respect to standard non-robust image features. We empirically show that adopting robust representations as an image prior significantly improves the reconstruction accuracy of CNN-based feature inversion models. Furthermore, it allows reconstructing images at multiple scales out-of-the-box. Following these findings, we propose an encoding-decoding network based on robust representations and show its advantages for applications such as anomaly detection, style transfer and image denoising
    • …
    corecore